
TRI: Bridging the Gap between Wireless Sensor Networks
and Autonomous Agents

Todd Sullivan Dr. Yi Shang
Undergraduate Honors Thesis
University of Missouri-Columbia

Abstract

Wireless Sensor Networks (WSNs) offer vast amounts of real-time data about environments. These real-time data
streams are an important resource for the ever-increasing number of autonomous agents. Robots can use WSN in-
formation to effectively extend their senses and gather data about regions that are not visible or immediately accessi-
ble. Additionally, software agents can aggregate WSN data for monitoring purposes such as environmental monitor-
ing and intrusion detection. Despite advances in the field of WSNs, the development of most applications currently
requires sensor-specific programming techniques. The research community, as well as industry, needs an efficient,
convenient method for accessing WSN data through existing infrastructure such as intranets and the internet. This re-
search project presents TRI, the TinyOS Robot Integration server. TRI is a multithreaded server that provides devel-
opers with WSN data management and agent-agent communication channels through a TCP/IP connection and a hu-
man-readable message protocol. The TRI server hides the details of retrieving data from and managing a WSN.
Thus, developers with standard TCP/IP socket experience can incorporate WSNs into their projects. This research
also presents TRI applications executing on a Sony AIBO that responds to its environment by its onboard sensors and
the extra sensory data from a WSN.

1 Introduction
The field of Wireless Sensor Networks (WSNs) is a rap-
idly developing research field in computer science and
computer engineering. As wireless sensors continue to
shrink in size and increase in capabilities, many real-
world applications in monitoring, tracking, and detec-
tion are becoming feasible. WSNs are ripe with infor-
mation that external agents can use to learn more about
their environment and thus make better decisions.

Despite advances in the field of WSNs, the devel-
opment of most applications currently requires sensor
specific programming techniques. These techniques in-
clude programming for specific operating systems such
as TinyOS [1] and using APIs for solutions such as Ti-
nyDB [2] and TASK [3]. These programming specifics
are a burden on application developers, especially when
developing applications for external agents such as ro-
bots. To overcome these barriers, the research commu-
nity needs a solution that removes these sensor-specific
details and provides access to WSNs through common
TCP/IP connections.
 This paper presents TRI, a multithreaded server that
provides developers with WSN data management and
agent-agent communication channels through a TCP/IP
connection and a human-readable message protocol.
The main contributions of this paper are:

• The presentation of the TRI server including its
design and implementation.

• The demonstration of a TRI application using a
Sony AIBO that responds to its environment by
its onboard sensors and the extra sensory data
from a WSN.

2 Background
A sensor network can consist of hundreds or thousands
of motes. These motes each run an operating system
designed for low power consumption with limited proc-
essing and storage capabilities. The most popular motes
for WSNs are Mica and Mica2, which run TinyOS. On
top of TinyOS, TinyDB allows users to query the sensor
network as if it were a database, while TASK builds
upon TinyDB to allow for easy deployment of a sensor
network for monitoring environments.

2.1 TinyOS
TinyOS is an application-specific operating system de-
signed for low-power operation and event-centric con-
current applications. Developers create programs for
motes using the NesC programming language, which is
similar to C. The operating system uses a component-
based programming model where developers wire com-
ponents together to create an operating system for each
specific application. TinyOS provides a core set of in-
terfaces for accessing the LEDs, nonvolatile storage,
timers, and various sensors.

1

 Developing TinyOS applications requires program-
ming experience in embedded devices. Patience is also
required due to the nature of embedded programming
and the lack of output devices that show the current
state of variables and programs. These details are cum-
bersome for developers that are not interested in devel-
oping embedded device applications and are instead
only interested in receiving sensory data from the WSN.

2.2 TinyDB
TinyDB is an application built upon TinyOS. TinyDB
frees developers from programming within the TinyOS
environment. Instead, the TinyDB mote application
runs on all of the motes in a WSN network. Developers
must write a Java program to access mote data or exe-
cute a command line program to receive specific data
from the WSN.
 TinyDB allows access to sensor data through Ti-
nySQL, which is a query language similar to SQL. Ti-
nySQL queries are of the form:

SELECT <aggregates>, <attributes>
[FROM {sensors | <buffer>}]
[WHERE <predicates>]
[GROUP BY <exprs>]
[SAMPLE PERIOD <const> | ONCE]
[INTO <buffer>]
[TRIGGER ACTION <command>]

An example of a query that retrieves each mote ID and
light reading every second is: SELECT nodeid, light
FROM sensors SAMPLE PERIOD 1024;.
 While TinyDB is a much better solution for devel-
opers wishing to receive data from sensor networks, it is
still cumbersome since developers must write a program
in Java that uses the TinyDB Java library to manage
queries to the WSN. Ideally, a developer should be able
to connect a program such as an autonomous agent to a
server that handles all query processing details. Instead
of making each agent manage the process of requesting
and receiving data from TinyDB, each agent should
simply be able to connect through a TCP/IP connection
to a server that manages TinyDB tasks.

2.3 TASK
TASK, the Tiny Application Sensor Kit, is a suite of
tools designed to ease deployment of sensor network
applications for non-sophisticated users. TASK con-
sists of TinyDB, the TASK Server, PostgreSQL, TASK
client tools, and the TASK Field Tool. The sensor net-
work runs the TinyDB mote application. The Task
Server acts as a manager between the WSN and the
internet. The TASK Server uses the PostgreSQL data-
base to store query and mote deployment information.
The TASK client tools allow users to visualize sensor
readings, create TinyDB queries that execute on the

sensor network, and record mote deployment data such
as locations and names of motes in the deployment area.
The TASK Field Tool is a PDA application that helps
users diagnose problems while in the field.
 TASK is primarily for environmental monitoring.
Its focus on ease of use allows researchers and WSN
end users in areas such as agriculture to leverage the po-
tential of WSNs for monitoring purposes. TRI's design
learns from the results of TASK development. Instead
of focusing on providing an easy-to-use tool for envi-
ronmental monitoring, TRI focuses on providing a
server application for agent communication and agent
access to a WSN.

3 TRI Server Model
The TRI server allows agents to gather data from a
WSN, read past data from the server's database, and
communicate with other agents using a human-readable
message format. The sensor network's motes run Ti-
nyDB, which the server uses to execute queries. The
server stores agent information and query data in a
MySQL database. The server is multithreaded and has
no programming-related limit on the number of agents
that can connect, communicate, and execute queries.
Appendix A includes the applicable commands and re-
sponses for the TRI server.

3.1 Agent-Agent Communication
When agents connect to the server, they must register
themselves. After registering, agents can receive a list
of other agents connected to the server. Agents can
communicate through 1 to 1 messages and 1 to N mes-
sages. Agents can also receive notices when other
agents join or exit the server.
 Agents communicate with one another through the
send command, which has the format
send!#!agent_name!#!message where agent_name is
the registered name of the recipient and message is the
message to be sent. The server parses the command as
a string, but the message section can be any format that
the agents mutually agree upon. For example, an agent
can send binary data, XML data, or comma-separated
data in the message section.

3.2 Agent-WSN Communication
Through the server, agents can create, start, stop, and
listen to queries on the TinyDB network. Additionally,
agents can choose to have queries log data to the
MySQL database, monitor which queries are running on
the TinyDB network, view which other agents are lis-
tening to each query, and listen to old query data from
the MySQL database that is replayed in real-time.

2

3.3 Query Logging
The server records all agent and query activity. Re-
corded activities include agent login times, query data,
query start and stop times, agent listen start and stop
times for each query, and query details such as the
query's TinySQL, description, and creator. Query data
is only logged if at least one agent requests the server to
log a specific query's results.

Agents can turn query logging on and off when start-
ing a query or at any time while a query is running.
Agents can choose whether queries continue to execute
and record data after all listening agents stop listening.
Thus, the server can continuously record a query's data
to the database while agents come and go as listeners.

3.4 Real-Time Replay
One advantage of recording query data to a database is
that agents can retrieve the histories and make decisions
based on these histories. Another advantage of storing
query data is that the server can replay the data back to
an agent as if it is happening in real time. This is most
useful when testing algorithms with a consistent set of
data.

For example, suppose that a developer is working
with an autonomous robot and is testing an algorithm.
The developer needs to test the algorithm for a specific
type of input from the sensor network. With the TRI
server, the developer can create the desired effects in
the sensor network once and have the readings stored in
the database. When testing the algorithm, the server
will replay the entire timeframe back to the robot as if
the event was happening again. Since the data that the
robot receives is the same every time, the developer can
quickly adjust the algorithm for testing purposes.

An additional advantage of the real-time replay fea-
ture is that developers can easily create demonstrations
for presentations that provide the robot with the correct
feedback each time. This is useful when presenting re-
search to an audience and when explaining an algorithm
or concept to a group. In the latter case, the presenter or
teacher can pause the replay at any time and demon-
strate the topic in steps.

4 Implementation
The TRI server is a Java application that requires JDK
1.4.1 since the TinyDB Java library does not work with
JDK 1.5. The server consists of six main parts: Ab-
stractServer, triServer, QueryManager, Query, Agen-
tHandler, and DBLogger. Figure 4a depicts these six
implementation layers.

Figure 4a: The six implementation layers.

Each layer is built from the layers below it.

4.1 AbstractServer
The AbstractServer is a multithreaded server that listens
for incoming requests and efficiently manages a group
of connections by maintaining a pool of threads. The
AbstractServer manages the group of connections
through a request queue, which handles each request
when a thread from the pool is available. This compo-
nent has a minimum and maximum possible thread
count for the pool. The thread count restrictions are
specified when instantiating an AbstractServer object.

The AbstractServer performs all of the tasks in-
volved in managing the connections for the server. This
allows the layers above the AbstractServer to focus on
application-specific details. As the name suggests, the
AbstractServer is an abstract class that triServer ex-
tends.

The AbstractServer requires triServer to supply a re-
quest handler class for handling requests from connec-
tions. Within the constructor of triServer, the Abstract-
Server receives the AgentHandler class as the request
handler. Thus, whenever the AbstractServer receives a
new connection or message from a connection, the in-
formation is passed to the associated AgentHandler.
The AbstractServer uses the thread pool to execute the
AgentHandler instances.

4.2 triServer
The triServer acts as the bridge between the AgentHan-
dlers and the QueryManager. The triServer maintains a
map of agent names to AgentHandlers and provides the
shared functions for the QueryManager and AgentHan-
dlers. These shared functions pertain to adding agents
to the system, sending preprocessed query data to
agents, sending messages to agents, and removing
agents.

The AgentHandlers initiate the majority of the code
execution within the triServer. Since the AgentHan-
dlers are managed by a pool of threads, the majority of
the functions and data structures within the triServer are
synchronized to avoid access from multiple threads at
the same time. Additionally, the triServer contains the
main function and is thus the class to compile and exe-
cute when starting the TRI server.

3

4.3 QueryManager
The QueryManager manages the queries as Query ob-
jects, initiates database activity through the DBLogger,
and uses the TinyDB Java library to control the WSN.
The QueryManager contains a map of query names to
Query objects. The layer also maintains a generator for
TinyDB IDs so that new queries into the WSN do not
override older running queries.

The QueryManager provides the functionality for
creating, starting, stopping, modifying, and listening to
queries. The QueryManager also provides status infor-
mation such as the number of running queries and query
listeners. The QueryManager acts as the bridge be-
tween the DBLogger and the Query objects.

4.4 Query
The Query object manages a single query that is active
in the TinyDB network. Each object includes informa-
tion about the specific query such as its name, creator,
description, start time, and TinyDBQuery object. The
Query object maintains a list of listeners and sends
query data to each listener when the TinyDB Java li-
brary sends a query result to the object's addResult
method. The Query object also sends query data to the
DBLogger if the query's database logging is set to true.

When removing listeners through the stopquery
command, the Query object checks to see if the query
should terminate. The object will tell the QueryMan-
ager to destroy the Query object if there are no addi-
tional listeners and the query is either not logging to the
database or the last agent to leave sent the kill database
flag. Appendix A outlines the kill database flag under
the stopquery command. If a listener removes itself us-
ing the stoplistentoquery command then the Query ob-
ject does not perform these checks.

If the Query object is a real-time replay instead of a
TinyDB query then the Query object manages the histo-
ries and serves each history to the listeners at the appro-
priate time. The object achieves this through an inner
class called resultsTask, which includes a timer that de-
termines when to send each result to listeners. The
timer determines which results to send by using each re-
sult's epoch value and keeping track of time relative to
the when the query data was originally receiving data
while recording the query to the database. TinyDB pro-
vides the epoch value from the motes for each set of
query data. The server includes the epoch value and re-
ceiving time on the server when recording query data to
the database.

4.5 AgentHandler
The AgentHandler object manages a single connection
with an agent. The AgentHandler sends messages from

the server, WSN, and other agents to its associated
agent. The primary function of the AgentHandler is the
handleCommand routine, which parses a message from
the agent and performs the appropriate command.

The AgentHandler parses each message by splitting
the string into segments based on the delimiter "!#!". In
the case of a send command, the handler reconstructions
the message with the delimiters intact so that the mes-
sage is not mangled when sent to the receiving agent. If
the message has any errors in syntax or the command
does not execute properly, the AgentHandler will send
the agent an appropriate error message as outlined in
Appendix A.

4.6 DBLogger
The DBLogger manages the MySQL connection, writes
all data to the database, and loads queries from the da-
tabase into Query objects. When creating a new query,
the DBLogger creates a new table in the database for
the query's data. All tables in the database use the In-
noDB engine. All methods within DBLogger return
status codes so that other layers can report errors to the
agents. The DBLogger records all activity by using
prepared statements and result sets.

5 Application: Sony AIBO
This section demonstrates an application of the TRI
server using a Sony AIBO. The AIBO programs are
written in C++ and use the Tekkotsu framework [4]. In
each demonstration, the AIBO reacts to the light level
from each mote in the WSN. Due to resource con-
straints, the test environment includes one Sony AIBO
and a WSN consisting of two Mica2 motes that sense
sound, light, temperature, and pressure levels.
 The AIBO programs use a shared triManager pro-
gram for communication with the TRI server. The tri-
Manager program contains functions for saving agent
data to memory and nonvolatile storage, sending com-
mands to the TRI server, and registering TRI queries.
The first TRI AIBO program to execute instantiates the
triManager.
 The AIBO programs are Head Movement, Sleep-Sit-
Stand, and Walk to Light. In Head Movement, the
AIBO lies down and moves its head in response to the
average light from the WSN. In the brightest light read-
ing, the AIBO's head is at its maximum upright posi-
tion. In the darkest setting, the AIBO's head moves to
the lowest position between its front legs.
 Sleep-Sit-Stand is similar to Head Movement. In the
darkest setting, the AIBO lies on the ground with its
head in-between its front legs. As the environment's
light level increases, the AIBO begins to sit up and then
stand. The AIBO chooses its target position from the

4

full range of positions based on the average light read-
ing.

In Walk to Light, the AIBO walks to the mote that
senses the highest light intensity. The program only
works with two sensing motes. The program assumes
that bright pink designates mote 1 and bright green des-
ignates mote 2. When searching for the target mote, the
AIBO turns counterclockwise until it sees the correct
color. Once the program finds the target, the AIBO po-
sitions itself in front of the object.

5.1 Implementation
While TinyDB supports aggregation of values across
the motes in the WSN, the AIBO programs do not use
this feature. The AIBO programs do not use TinyDB's
aggregation features when determining the average light
reading from the WSN because TinyDB's aggregation is
unreliable when the WSN contains only two motes.
Due to interference, TinyDB does not always receive
data from all motes during each epoch.

In the case of determining the average light value, if
only one mote has data available, then that mote's data
is the average. This causes problems, for example,
when one of the motes has a light reading of 0 and the
other has a light reading of 1,000. Instead of always re-
turning an average of 500, the average fluctuates each
epoch between the values 0, 500, and 1,000.

To remedy this issue, the AIBO instead receives
each mote's light reading for each epoch. During each
iteration, the AIBO computes the average based on the
last received values from each mote. This technique
significantly wastes bandwidth and computations when
the number of motes in the WSN is large, but for the
two-mote implementation, the technique suffices.

Additionally, all of the AIBO programs are tem-
plated classes that receive an integer called rate. Rate is
the number of milliseconds to use in the sampling pe-
riod section of the TinySQL statements. Thus, one can
easily run the demonstrations at various sampling rates.

5.1.1 triManager
The triManager maintains agent data through a standard
template library map of strings to strings. The triMan-
ager’s initialization phase loads the file tri.cfg, which
contains name-value pairs separated by a colon on each
line, and parses it to create the map of agent data.
tri.cfg must define the agent’s name, and the TRI
server’s IP and port. If the configuration file does not
define the required agent data then the triManager uses
the default values Scooter, 192.168.1.2, and 11223 re-
spectively. All programs that use the triManager can
define additional agent data through the use of the ad,
saveAgentData, and removeAgentData functions.

 The triManager manages the connection with the
TRI server. This includes registering the agent, for-
warding commands from AIBO programs, and parsing
results from the TRI server. The triManager forwards
messages from AIBO programs through a standard
printf function. The triManager only forwards mes-
sages to the server if the agent is successfully registered
with the server.
 The triManager parses results from the TRI server
by translating each message into a map of strings to
strings. Appendix B includes the details of the map in
relation to each possible response from the TRI server.
After generating each result's map, the triManager for-
wards the map to all listeners. Thus, multiple AIBO
programs executing on the same robot can concurrently
use the triManager and access the WSN.
 When sending query data to listeners, the triManager
by default names the fields in the result row field_0,
field_1, field_2, … in accordance with the order that the
fields are specified in the query's TinySQL. For ease of
use, the triManager allows AIBO programs to register
query fields through the registerQueryFields function.
Registering a query's fields allows an AIBO program to
designate names for each field. If an AIBO program
register's a query's fields, then the query data's result
maps will include the designated names instead of
field_0, field_1, etc.

5.1.2 Head Movement
Head Movement, known as the triHeadLightAvgAI-
BOAgg class within Tekkotsu, can be visualized as a
simple two-node state machine as shown in Figure
5.1.2a. During the initialization phase, the program
loads the "sleeping" position, registers itself to receive
sensory information about completed movements, and
registers with the triManager. Once the AIBO is lying
down, the program creates an object for controlling the
head motors and registers the object with the Tekkotsu
Motion Manager. The AIBO also creates a timer that
fires at a rate that is specified by the class' type.

Figure 5.1.2a: Head Movement State Machine.

After registering with the triManager, the triManager
will send a registersuccess message to the program
when the AIBO is successfully registered with the TRI

5

server. Upon receiving the registersuccess message, the
program sends its startquery message to the TRI server.
When receiving query data from the TRI server, the
program parses the data and records the new light read-
ing for the respective mote.

The AIBO calculates the average light from the
WSN each time the program's timer fires. If the aver-
age is different from the previous average, then the pro-
gram calculates its new head position by translating the
average light value into a percent, multiplying the per-
cent by the distance between the maximum and mini-
mum neck position, and then adding the result to the
minimum neck position. Finally, the program obtains
mutually exclusive access to the head motion object and
sets the new joint value.

5.1.3 Sleep-Sit-Stand
Sleep-Sit-Stand, known as the triSleep-
ToStandLightAvgAIBOAgg class within Tekkotsu, can
be visualized as a five-node state machine as in Figure
5.1.3a. The initialization phase is almost identical to the
Head Movement program. The only differences are that
Sleep-Sit-Stand creates an object for controlling the en-
tire robot's posture and loads the five predefined pos-
tures (sleep, sit, crouch, stand, excited) into memory.
The states and their associated posture can be thought of
as a ladder of average light values where sleep is on the
bottom and excited is on the top.

Figure 5.1.3a: Sleep-Sit-Stand State Machine.

When the program is in the sit, crouch, or stand
state, the AIBO blends its current posture with the pos-
ture above it. The program calculates the percent
weight that the two postures should have in the final
blended posture by the following calculation:

After calculating the percents, the program blends
the two postures with the current state's posture forming
Posture(N)_Percent of the final posture and the follow-
ing state's posture forming Posture(N+1)_Percent of the
final posture. Thus, during the three interior states of
the ladder the AIBO ranges from 100% Posture(N) to
100% Posture(N+1). For example, if the program is in
the sit state and the average light value is 450 then Pos-
ture(N+1)_Percent equals 80% and Posture(N)_Percent
equals 20%. In this case, the blended posture is 80%
Posture(N+1) and 20% Posture(N).
 While in the sleeping state, the program moves the
AIBO's head using the same algorithm as Head Move-
ment. When in the excited state, the AIBO raises its
head to the side, opens its mouth, and flaps its ears in
accordance to the average light value in a similar fash-
ion to the Head Movement program. While transferring
from one posture to another posture that is more than
one state away, the AIBO loads the sequence of pos-
tures one after another to create a fluid transition. The
algorithm for moving between these postures is not im-
mediately visible because the algorithm must take into
account the unique activities that occur at each state.
 If the program is in the sleep state and the average
light value increases to more than 250, then the program
has to move to the "top" of the sleep state before reach-
ing the sit state. The "top" of the sleep state is when the
AIBO's neck joint is at its maximum value, which
makes the AIBO's head rest on its shoulders. Similarly,
when moving from the excited state to the stand state
the program must move to the "bottom" of the excited
state before reaching the stand state. The "bottom" of
the excited state is when the AIBO's mouth is closed, its
head is straight, and its ears are not flapping. The "top"
of the sleep state and the "bottom" of the excited state
are easy to reach because they are the hard-coded pos-
tures for the two states that are held in memory.
 When the program climbs up the ladder, the program
simply transitions by loading each state's posture in or-
der until the target state is reached. When the program
moves down the ladder, the program transitions by
loading each state's posture in order until the state above
the target state is reached. At this point, the program
considers itself at the target state and runs the target
state's routine for posture adjustment.

The case moving down is different because the
states sit, crouch, and stand continuously blend their re-
spective state's posture with the posture for the state
above. If the program included the target state's posture
while loading states moving down the ladder then the
program would reach the "bottom" of the target state
and then move upwards into a blend between the target
state's posture and the poster for the state above. The
only special case when moving down is when moving
to the sleeping state. In this special case, the postures
load in sequence and include the sleeping posture.

6

5.1.4 Walk to Light
Walk to Light, known as the triWalkToLight class
within Tekkotsu, can be visualized as the state machine
in Figure 5.1.4a. The initialization phase includes all of
the steps in Head Movement. Additionally, the initiali-
zation includes creating and registering a walking mo-
tion object and registering the program for vision
events.

Figure 5.1.4a: Walk to Light State Machine.

 The program reaches the find target state by receiv-
ing a new target or by losing sight of its current target.
The program receives a new target when the current tar-
get mote's light value is less than the other mote's light
value. The program can lose sight of the current target
if the target moves faster than the AIBO can turn to face
it.

Once the program is in the find target state, the pro-
gram uses the walking motion object to make the AIBO
turn counterclockwise. The AIBO continually turns un-
til the program receives a motion event for the color that
corresponds to the target. The program moves into the
orientation state upon seeing the target.

During the orientation state, the program positions
the AIBO in front of the target. Two separate processes
accomplish this orientation. The first process points the
AIBO's nose towards the center of the object while the
second process moves the AIBO's legs in the proper di-
rection so that the AIBO's nose will point straight
ahead.

The Tekkotsu visual system notifies the program of
the target's sighting several times each second. Upon
notification, the program determines the center of the
object in the camera and updates the head motion's tar-
get head pan and head tilt values such that the resulting
position will leave the center of the object in the center
of the camera. After creating the head motion, the pro-
gram stores the calculated pan and tilt values and the
percentage of the camera that the object occupies in
memory (AP).

While in the orientation state, a timer fires at a rate
specified by the class' type. The program adjusts the
walking motion during each timer firing. The walking
motion object includes methods for setting a direction to
walk based on a forward velocity, strafing (left) veloc-

ity, and turning (counterclockwise) velocity. These
forward and strafing velocities are in millimeters per
second while the turning velocity is in radians per sec-
ond.

Conveniently, the head motion object uses radians
per second for the pan and tilt values. Thus, the turning
velocity of the walking motion object is simply the last
recorded pan value. The program calculates the forward
velocity based on the last calculated AP and pan values.
If the AP is greater than 65% then the AIBO is too close
to the target and the program sets the forward velocity
to -50. If the AP is less than 45% then the AIBO is far
away from the target and the program chooses a posi-
tive value for the forward velocity. The velocity chosen
depends on the pan value. If the pan value is in-
between -10% and 10% then the object is straight ahead
and the program sets the forward velocity to 100. Oth-
erwise, the program sets the forward velocity to 50 be-
cause the AIBO needs to turn more than it needs to
walk forward. If the AP is in-between 45% and 65%
then the AIBO is a comfortable distance from the target
and the program sets the forward velocity to zero. Ad-
ditionally, the program always sets the strafing velocity
to zero.

5.1.5 Real-Time Replays
The real-time replays of the AIBO demonstrations do
not involve any special programming on the AIBO. In-
stead, the user manually initiates a real-time replay.
First, the user must record the replay by starting the de-
sired query and setting it to log data to the database.
After recording data, the user can initiate a real-time re-
play of an AIBO demonstration by telnetting into the
TRI server, registering as an agent, starting a replay us-
ing the replayquery command, and then starting the de-
sired AIBO demonstration program.

5.2 Results

5.2.1 Head Movement
The Head Movement application works as intended. As
shown in Figure 5.2.1a, the AIBO lies down and moves
its head in accordance with the light. In the figure, the
average light percent is at approximately 50% and the
AIBO's neck is half way in-between its minimum and
maximum values.

7

Figure 5.2.1a: Head Movement Video Screenshot.

 The program's response time is dependent on the
sampling period for the light readings. The standard
sampling periods in the out-of-the-box application are
128, 256, 512, and 1024 milliseconds. Thus, when the
sampling period is 1024 milliseconds, the AIBO's head
adjusts with a delay of approximately 1024 + ε milli-
seconds, where ε tends to be an unnoticeable amount of
milliseconds.

5.2.2 Sleep-Sit-Stand
The Sleep-Sit-Stand program successfully moves the
AIBO through the different postures and blends of pos-
tures. Figure 5.5.2a shows the AIBO in a blend be-
tween sitting and crouching. The program has the same
response times as the Head Movement program. Addi-
tionally, the Sleep-Sit-Stand program can cause the
AIBO to shut down if the AIBO is on a rough or sticky
surface.

Figure 5.2.2a: Sleep-Sit-Stand Video Screenshot.

 When the AIBO reaches the standing and excited
positions, the program straightens the AIBO's legs.
This process does not involve lifting each paw. Instead,
the AIBO effectively drags its feet along the floor.
Thus, when on a rough or sticky surface the AIBO's

motors may not be able to drag the feet to the proper
position. If the motors cannot reach their target posi-
tion, they will exceed their power output safety limits
and the AIBO will immediately shut down. In tests, the
motors tend to reach their safety limits within 15 to 30
seconds of a sticky situation.

5.2.3 Walk to Light
The Walk to Light program's integration with the TRI
server works flawlessly. The demonstration has similar
reaction delays as the other demonstrations. Similarly
to the Sleep-Sit-Stand program, the demonstration is-
sues lie entirely in the limitations of the AIBO and Tek-
kotsu framework.

Figure 5.2.3a: Walk to Light Video Screenshot.

The two targets (the pink and green boxes) each contain one
light-sensing mote. When the second light, which is outside of
the picture (above the AIBO), is on, the pink target is brightest.
Otherwise, the green target receives the most light from the visi-
ble lamp in the image.

 The Walk to Light program relies on the AIBO's and
Tekkotsu's vision system for locating the target object.
The vision system is extremely sensitive to lighting
conditions. The best lighting conditions are achieved
when using multiple white light sources that eliminate
most shadows.

Figure 5.2.3a depicts the test setup for the Walk to
Light demonstration. Due to resource limitations, the
setup is not the ideal configuration. The vision system
returns more accurate results when the walls and floor
are solid black. In the test setup, the vision system of-
ten found hints of pink objects in the brown walls.

Additionally, the size of the target objects have a
significant effect on performance. In the test setup, the
AIBO had a significantly easier time locating the green
target in the bottom left of Figure 5.2.3a than the pink
target in the top right of the figure. The green target
was easier to locate because larger objects are deter-
mined to have a more consistent size in Tekkotsu's
built-in vision system.

8

5.2.4 Real-Time Replays
Figures 5.2.4a and 5.2.4b show the real-time replays of
the Sleep-Sit-Stand and Walk to Light programs, re-
spectively. In each figure, the ghost-like AIBO is the
AIBO during the replay of the original WSN data. Each
figure includes a screenshot from the original recording
and an overlay from the recording of the replay. As
seen in the figures, the AIBO's responses are almost
identical. The only differences are due to different
starting positions on the test setup's floor.

Figure 5.2.4a: Sleep-Sit-Stand Original/Replay Overlay.

Figure 5.2.4b: Walk to Light Original/Replay Overlay.

6 Conclusion
TRI allows developers to easily integrate WSNs into
their projects without requiring knowledge of the under-
lying systems for sensing, retrieving, and storing data.
The TRI server is accessible for any program that can

access the internet or an intranet and establish TCP/IP
connections. The AIBO demonstrations provide a basic
template for autonomous agent integration with the TRI
server and show basic applications where an autono-
mous agent uses WSN data to make decisions.

The TRI and AIBO demonstration source code is
available at http://research.daysignmedia.com/ug/. The
source code is available under the GNU Lesser General
Public License Version 2.1. The previously listed web-
site also includes videos of the AIBO demonstrations,
additional commentary, and tutorials for installing and
modifying the TRI server and AIBO demonstrations.

7 Acknowledgements
I would like to thank Dr. Yi Shang for inviting me into
the Undergraduate Honors Research Program and for
providing the AIBO, motes, laptop, and router for the
project. Additional funding was also provided by the
College of Engineering. The project's development
would also not be possible without the contributions
from all of the individuals of the Tekkotsu framework,
TinyOS, and TinyDB.

References
[1] P. Levis, S. Madden, J. Polastre, R. Szewczyk, K.

Whitehouse, A. Woo, D. Gay, J. Hill, M.
Welsh, E. Brewer, and D. Culler, "TinyOS: An
Operating System for Wireless Sensor Net-
works," Book chapter in "Ambient Intelli-
gence", edited by W. Weber, J. Rabaey, and E.
Aarts, Springer, April 2005.

[2] S. Madden, M. J. Franklin, J. M. Hellerstein and W.

Hong, "TinyDB: An Acqusitional Query Proc-
essing System for Sensor Networks," ACM
TODS, 2005.

[3] P. Buonadonna, D. Gay, J. M. Hellerstein, W. Hong,

and S. Madden, "TASK: Sensor Network in a
Box," European Workshop on Sensor Networks
(EWSN), 2005.

[4] D. S. Touretzky and E. J. Tira-Thompson, "Tek-

kotsu: A framework for AIBO cognitive robot-
ics" Proceedings of the Twentieth National
Conference on Artificial Intelligence (AAAI-
2005). Menlo Park, CA: AAAI Press.

9

Appendix A - TRI Server Commands and Responses

Client to Server

register!#!agent_name
Used to register an agent name on the server.
agent_name can be any string that does not contain "!#!".
If an agent does not register, then it can only use the commands register and exit.
TRI Response: Upon successful registration, the TRI server returns registersuccess.

Error Status:

1 = The agent is already registered.
2 = The command is malformed. It either does not contain an agent_name or contains extra ar-

guments (separated by "!#!").
3 = Another agent is already using the specified agent_name.

exit

Disconnects the agent from the TRI server.
TRI Response: This command does not have a response.
Error Status: This command cannot have an error-based response.

getagents

TRI Response: Returns an agentlist with a comma-separated list of the connected agents' names of the form:
agentlist!#!agent_name,agent_name,agent_name,agent_name,...

Error Status: This command cannot have an error-based response.

getrunningqueries

TRI Response: Returns a runningquerylist with a comma-separated list of the running querys' names of form:
runningquerylist!#!query_name,query_name,query_name,...

Error Status: This command cannot have an error-based response, but can return an empty list that looks like:
runningquerylist!#!

getquerylisteners!#!query_name

TRI Response: Returns a querylistenerslist with a comma-separated list of the query's listeners' agent names:
querylistenerslist!#!agent_name,agent_name,agent_name,agent_name,...

Error Status:
1 = The command is malformed. You either did not specify a query_name or the command con-

tains extra arguments (separated by "!#!").
This command can return an empty list that looks like: querylistenerslist!#!

send!#!agent_name!#!message

Sends the message to the agent with the specified agent_name.
The message field can contain any set of characters, binary data, etc. A message is not mangled by the TRI server
if it contains "!#!" in the string, binary format, or any other format that the agent wishes to use.
TRI Response: This command does not have a response.

Error Status: 1 = The command is malformed. It is missing the agent_name and/or message.
2 = The agent specified by agent_name is not connected to the TRI server.

10

sendall!#!message

Sends the message to all agents connected to the TRI server including the sending agent.
The message field can contain any set of characters, binary data, etc. A message is not mangled by the TRI server
if it contains "!#!" in the string, binary format, or any other format that the agent wishes to use.

TRI Response: This command does not have a response, but the agent receives its own message in the format:
fromagent!#!agent_name!#!message

Error Status: 1 = The command is malformed. It is missing the message.

sendallbutself!#!message
Sends the message to all agents connected to the TRI server excluding the sending agent.
The message field can contain any set of characters, binary data, etc. A message is not mangled by the TRI server
if it contains "!#!" in the string, binary format, or any other format that the agent wishes to use.
TRI Response: This command does not have a response.
Error Status: 1 = The command is malformed. It is missing the message.

notifyonagentregister
Turns on agent register notification for the sending agent. Whenever a new agent registers with the TRI server,
agents with this notification turned on receive an agentregister!#!agent_name response.
TRI Response: Returns a notifyonagentregistersuccess response.
Error Status: This command cannot have an error-based response

NOnotifyonagentregister
Turns off agent register notification for the sending agent.
TRI Response: Returns a NOnotifyonagentregistersuccess response.
Error Status: This command cannot have an error-based response

notifyonagentexit
Turns on agent exit notification for the sending agent. Whenever an agent exits the TRI server, agents with this
notification turned on receive an agentexit!#!agent_name response.
TRI Response: Returns a notifyonagentexitsuccess response.
Error Status: This command cannot have an error-based response

NOnotifyonagentexit
Turns off agent exit notification for the sending agent.
TRI Response: Returns a NOnotifyonagentexitsuccess response.
Error Status: This command cannot have an error-based response

createquery!#!query_name!#!query_description!#!SQL
Creates a query in the database with the specified query_name, query_description, and SQL.
After creating a query, the query can execute on the WSN by using the startquery command.
TRI Response: Returns a createquerysuccess!#!query_name response.

Error Status:

1 = The command is malformed. It is missing a parameter or contains too many parameters.
2 = Query creation failed. This is not necessarily bad. If the parameters were of the correct for-

mat and the database server was accessible, then this means that the query specified by cre-
atequery already exists in the database.

11

startquery!#!query_name!#!type

Starts the query specified by query_name.
type can be logonly, listenonly, logandlisten, or lastlogreplay.

Returns a startquerysuccess!#!query_name response.
TRI Response: Also returns a listentoquerysuccess!#!query_name response if the type specifies that the agent

wants to listen to the query.

Error Status:
1 = The command is malformed. It is missing a parameter or contains too many parameters.
2 = The query specified by query_name does not exist in the database.
3 = The query was successfully started, but the TRI server failed to add the agent as a listener.

stopquery!#!query_name!#!optional_kill_even_if_logging_to_database

Stops the query designated by query_name.
optional_kill_even_if_logging_to_database can be any set of characters. For example, if you want to use the data-
base kill flag, you can send stopquery!#!query_name!#!1.
If you do not want to use the database kill flag, then the query will continue to exist if it is logging to the database.
To not use the kill flag, send stopquery!#!query_name.
TRI Response: Returns a stopquerysuccess!#!query_name response.

Error Status: 1 = The command is malformed. It is missing a parameter or contains too many parameters.
2 = The TRI server failed to stop the query. This is most likely because the query is not running.

listentoquery!#!query_name

Stops the query designated by query_name.
optional_kill_even_if_logging_to_database can be any set of characters. For example, if you want to use the data-
base kill flag, you can send stopquery!#!query_name!#!1.
If you do not want to use the database kill flag, then the query will continue to exist if it is logging to the database.
To not use the kill flag, send stopquery!#!query_name.
TRI Response: Returns a listentoquerysuccess!#!query_name response.

Error Status: 1 = The command is malformed. It is missing a parameter or contains too many parameters.
2 = The TRI server failed to stop the query. This is most likely because the query is not running.

stoplistentoquery!#!query_name

Removes the agent from the query specified by query_name.
TRI Response: Returns a stoplistentoquerysuccess!#!query_name response.

Error Status:
1 = The command is malformed. It is missing its parameter or contains too many parameters.
2 = The TRI server failed to remove the agent from the listener list. This is most likely because

the query is not running.

setlogquery!#!query_name!#!type
Changes the log type of the query designated by query_name.
type should be set to 0 for turning database logging off and 1 for turning database logging on.
TRI Response: Returns a setlogquerysuccess!#!query_name response.

Error Status:
1 = The command is malformed. It is missing a parameter or contains too many parameters.
2 = The TRI server failed to set the query's database logging status. This is most likely because

the query is not running.

12

createstartquery!#!query_name!#!query_description!#!SQL!#!type
Creates the query if it does not exist and then starts the query. This is a combination of createquery and startquery
and is used in all of the AIBO demonstrations instead of the separate queries.
If the query is already running, then the TRI server adds the agent as a listener if requested by type.
type can be logonly, listenonly, logandlisten, or lastlogreplay.

Returns a createstartquerysuccess!#!query_name response. TRI Response:
Does not return the success message from createquery or startquery.

Error Status: 1 = The command is malformed. It is missing a parameter or contains too many parameters.

reinjectquery!#!query_name
Tells the TRI server to reinject the TinySQL query into the WSN. Sometimes after starting a query the WSN fails
to return any results because interference stops the query injection from reaching the motes. If an agent is expect-
ing data but is not receiving any data, this command might solve the issue.
TRI Response: Returns a reinjectquerysuccess!#!query_name response.

Error Status:
1 = The command is malformed. It is missing a parameter or contains too many parameters.
2 = The TRI server failed to reinject the query. This is most likely because the query is not run-

ning.

replayquery!#!query_name!#!start_date!#!end_date
Replays the query specified by query_name starting at the date specified by start_date and ending on the date
specified by end_date.
start_date and end_date are of the format YYYY-MM-DD HH:MM:SS
This starts a real-time replay. Once the replay reaches the end of the sensor data in the date range, the replay starts
over from the beginning. Note: This means that the replay starts from the beginning once it reaches the end of the
date range's recordings, which is not necessarily the same as the end_date.
TRI Response: Returns a replayquerysuccess!#!query_name response.

Error Status: 1 = The command is malformed. It is missing a parameter or contains too many parameters.
2 = The TRI server failed to generate a replay because the query does not exist.

Server Responses
connectsuccess Notifyonagentexitsuccess
registersuccess NOnotifyonagentexitsuccess
agentlist!#!agent_name,agent_name,... createquerysuccess!#!query_name
agentregister!#!agent_name startquerysuccess!#!query_name
agentexit!#!agent_name createstartquerysuccess!#!query_name
runningquerylist!#!query_name,query_name,... stopquerysuccess!#!query_name
querylistenerslist!#!agent_name,agent_name,,... setlogquerysuccess!#!query_name
querydata!#!query_name!#!field_0!#!field_1... listentoquerysuccess!#!query_name
fromagent!#!agent_name!#!message stoplistentoquerysuccess!#!query_name
fromserver!#!message reinjectquerysuccess!#!query_name
notifyonagentregistersuccess replayquerysuccess!#!query_name
NOnotifyonagentregistersuccess commanderror!#!command!#!status!#!message
commanderror is the response that the server sends whenever an error occurs. The status numbers are relative to the
command and are specified in the Client to Server table. The message field includes an English message describing
the error. The only command that is not included in the Client to Server table is mustlogin. The mustlogin error mes-
sage is sent if the agent is not registered and sends the TRI server any command except register or exit.

13

Appendix B – triManager's Server Response to Map Translation

The following table includes all of the mappings of the string to string map that the triManager sends
to the AIBO applications whenever receiving a response from the TRI server.

Always Available Mappings
command The command mapping returns the first field of the response string. For example, command may return

connectsuccess, registersuccess, querydata, agentlist, commanderror, etc.

Conditional Mappings
Relative

Command Mapping Description

query_name Returns the name of the query that the result row corresponds to.
num_of_fields Returns the number of fields in the result row.

epoch Returns the epoch for the data in the WSN.

query_error Only exists if the field count does not match num_of_fields. If the mapping
exists, it returns "invalid_field_num".

field_0, field_1,… The field_x mappings only exist if the agent does not use registerQuery-
Fields.

querydata

Names of the fields The names of the fields exist if the agent uses registerQueryFields to name
the fields. (This replaces the default mappings of field_0, field_1,…)

agent_count Returns the number of agent names in the list.
agentlist agent_name_0,

agent_name_1,… Each agent_name_x returns an agent's name.

agentregister agent_name Returns the name of the agent that joined the TRI server.
agentexit agent_name Returns the name of the agent that left the TRI server.

error
Returns the command that produced the error. For example, this mapping
may return createquery, startquery, listentoquery, stopquery, replayquery,
send, etc.

error_number
Returns the error number for the error. This number is relative to the com-
mand that produced the error. The possible numbers for each command are
in Appendix A.

commanderror

error_message Returns an English language string of the error.
agent_name Returns the name of the agent that sent the message.

fromagent
message Returns the message that the agent sent. This message can be in any format

that the agents have agreed upon using.
fromserver message Returns a message from the TRI server. Rarely used.
Any kind of

query success
message

query_name Returns the query name that the success message corresponds to.

14

