@— @,ﬂ

TR = F1T N

x'fd_,_
_gx

TR

v L X e %

B &

g i

Abstract

This research project presents TRI,
the TinyOS Robot Integration
server. TRI 1s a multithreaded
server that provides developers
with WSN data management and
agent-agent communication
channels through a TCP/IP
connection and a human-readable
message protocol. The TRI server
hides the details of retrieving data
from and managing a WSN. Thus,
developers with standard TCP/IP
socket experience can incorporate
WSNs 1nto their projects. This
research also presents TRI
applications executing on a Sony
AIBO that responds to its
environment by 1ts onboard sensors

and the extra sensory data from a
WSN.

TRI Server Model

The TRI server allows agents to
gather data from a WSN, read past
data from the server's database, and
communicate with other agents
using a human-readable message
format. The sensor network's
motes run TinyDB, which the
server uses to execute queries. The
server stores agent information and
query data in a MySQL database.
The server 1s multithreaded and
has no programming-related limit
on the number of agents that can
connect, communicate, and
execute queries.

Todd Sullivan

TRI: Bridging the Gap between

~g»-Wireless Sensor Networks and Autonomous Agents

Dr. Y1 Shang Undergraduate Honors Thesis
TRI Implementation

The TRI server 1s a Java application that requires
JDK 1.4.1 since the TinyDB Java library does not
work with JDK 1.5. The server consists of six main
parts: AbstractServer, triServer, QueryManager,
Query, AgentHandler, and DBLogger. These layers
have similar roles as their names imply.

DBLogger H Queries JI |
IAgentHandlers J

QueryManager

triServer

AbstractServer

TRI Implementation Layers

Application: Sony AIBO

The AIBO demonstrations include Head
Movement, Sleep-Sit-Stand, and Walk to Light.
T Each program demonstrates an application of
J the TRI server to a robot environment. In Head
sane =500 500 i< 700 IVJOVEMent, the AIBO lies down and moves its
head 1n response to the average light from the
WSN. In Sleep-Sit-Stand, the AIBO gradually
moves through the states of sleeping, sitting,
crouching, standing, and panting as shown 1n
the figure to the left. In Walk to Light, the
AIBO walks to the brightest node in the WSN.

New Target or
Lost Target

Walk To Light State Machine

Light = 250

Light < 250

Light < 250 Light < 500

Light = 700

Light =2 Qﬂﬂ Light < 900

Light = 900

700 = Light < 900

Sleep-Sit-Stand State Machine

Walk to Light Video Screenshot Slee
The two targets (the pink and green boxes) each contain
one light-sensing mote. When the second light, which
1s outside of the picture (above the AIBO), is on, the

p-Sit-Stand Original/Replay Overlay
The ghost-like AIBO is the AIBO during the replay of
the original WSN data. The figure includes a
screenshot from the original recording and an overlay

pink target i1s brightest. Otherwise, the green target
receives the most light from the visible lamp in the
image.

from the recording of the replay. As seen in the figures,
the AIBO's responses are almost identical. The only
differences are due to different starting positions on the
test setup's floor.

http://research.daysignmedia.com/ug/

University of Missouri-Columbia

Conclusions

TRI allows developers to easily
integrate WSNSs 1nto their projects
without requiring knowledge of the
underlying systems for sensing,
retrieving, and storing data. The
TRI server 1s accessible for any
program that can access the
internet or an intranet and establish
TCP/IP connections. The AIBO
demonstrations provide a basic
template for autonomous agent
integration with the TRI server and
show basic applications where an
autonomous agent uses WSN data
to make decisions.

http://research.daysignmedia.co
m/ug/ includes the TRI and AIBO
demonstration source code as well
as videos of the AIBO applications
and tutorials for installing and
modifying the TRI server and
AIBO demonstrations.

Acknowledgements

[would like to thank Dr. Y1 Shang
for inviting me 1nto the
Undergraduate Honors Research
Program and for providing the
AIBO, motes, laptop, and router
for the project. Additional funding
was also provided by the College
of Engineering. The project's
development would also not be
possible without the contributions
from all of the individuals of the
Tekkotsu framework, TinyOS, and

TinyDB.

