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Executive Summary 
 

The project's purpose is to learn about General Purpose Computing on Graphical 

Processing Units (GPGPU), determine the feasibility of porting an algorithm designed by a 

University of Missouri-Columbia PhD student, and develop prototypes that compute a portion of 

IPSA on the GPU and demonstrate using GPU-based computations within IPSA.  The algorithm, 

known as Index-based Protein Substructure Alignment (IPSA), has an average response time of 

twenty minutes.  Dr. Shyu hopes that the team's research into GPGPU technologies will show 

that GPU-based versions of his biology algorithms can perform faster than the current CPU 

versions and, in particular, that the GPU-based portion of IPSA is faster than its CPU 

counterpart. 

The team's study of GPGPU technologies and analysis of IPSA reveals that only 9.3% of 

IPSA's total processing time is parallelizable.  The remaining 90.7% of the total processing time 

is consumed by sections with an abundance of branching and extensive nested looping, both of 

which are extremely slow on the GPU.  Of the GPU-compatible 9.3%, the team created a GPU-

based prototype of the Compute_RMSD_D1 function, which consumes 7% of the total 

processing time. 

The GPU-based prototype calculates 102,400 chain comparisons simultaneously.  The 

prototype is 9.828 times faster than the CPU-based computation.  Without including any 

potential overhead from connecting the GPU-based computation with IPSA, the GPU-based 

IPSA algorithm is 1.076 times faster than IPSA and cuts 84 seconds off the total processing time.  

Any additional performance improvements require a redesign of IPSA that increases the amount 

of parallelizable code. 
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1 Problem Definition 

1.1 Introduction 
General-purpose computing on graphical processing units (GPGPU) is an emerging 

method for achieving high performance gains on various computing problems such as database 

operations, neural networks, and physics-based simulations.  The higher number of cores and the 

more efficient processing of complex mathematical calculations on GPUs in comparison with 

CPUs makes GPGPU a fascinating new method for deploying algorithms.  In an effort to reduce 

the runtime of protein-based search and retrieval algorithms, Dr. Chi-Ren Shyu of the University 

of Missouri-Columbia Medical Biological Digital Library Research Lab (MBDLRL) has asked 

the team to convert MBDLRL algorithms into comparable algorithms for processing on a GPU. 

1.1.1 Needs Analysis 
In particular, the team will study the potential for GPU-based MBDLRL algorithms and 

develop a prototype that implements a portion of PhD student Pin-Hao Chi's Index-based Protein 

Substructure Alignment algorithm (IPSA) [1] on the GPU.  IPSA is part of the MBDLRL's 

Protein Database Search Engine project (ProteinDBS) [2].  The algorithm currently takes twenty 

minutes on average to complete one query.  Dr. Shyu hopes that the team's research into GPGPU 

technologies will show that GPU-based MBDLRL algorithms can perform faster than the current 

CPU versions. 

1.1.2 Market Analysis 
The development of GPU versions of MBDLRL algorithms will benefit the study of 

proteins and various medical biology fields.  Reducing processing time will allow ProteinDBS to 

service more queries.  Protein retrievals, folding, and other algorithms will be more efficient and 

thus have a higher availability. 
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The experience the team will acquire and the framework that the team will develop is 

also applicable to many other research areas.  Since GPGPU methods are still very new, the 

framework and documentation will provide a base for GPGPU applications in all 

computationally intensive research.  Thus, the benefits of understanding GPGPU methods and 

developing a solid framework for converting algorithms to run on the GPU will have benefits 

beyond the protein retrieval algorithm that the team will study.  In fact, InformationWeek chose 

the field of GPGPU as one of the five disruptive technologies to watch in 2007 [3]. 

1.2 Technical Background 
The technical background includes Index-based Protein Substructure Alignments [1], 

general GPGPU techniques [4], current GPGPU technologies, and GPGPU performance 

techniques. 

1.2.1 Index-based Protein Substructure Alignments 
Through the use of computer algorithms, biologists have the ability to solve many 

computationally challenging problems.  For example, one area of interest in molecular biology 

surrounds protein structure matching.  Proteins, the essential building blocks of organisms, fold 

into complicated three-dimensional structures. Each structure has a unique shape that often 

determines its biological function.  IPSA presents a fast structure retrieval system to find similar 

proteins in a database of over 40,000 elements [5].  With such a large dataset, speed often 

becomes an issue since biologists need to have access to a system that provides results in real 

time.  As such, IPSA achieves much higher efficiency than its well-recognized competitors, 

DALI and CE.  IPSA is 37.66 times faster than DALI and 2.78 times faster than CE. 

 Although IPSA performs structure retrieval much faster than many other available 

systems, the algorithm could benefit from additional increases in speed.  By looking at overall 
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structure and important substructure elements, such as the commonly occurring alpha helix and 

beta sheet, the system can achieve higher accuracy than its predecessor, ProteinDBS.  However, 

an average response time of twenty minutes places a burden on the system and proves an 

inconvenience to researchers.  The project team will examine the data structures and algorithms 

used to determine how they may be processed using a GPU in order to increase efficiency.   

 IPSA features many large data structures that facilitate fast protein structure retrieval.  

Each protein is considered as a sequence of terms.  The algorithm maps substructure 

representatives into an M-tree.  Then, an inverted-protein index organizes the terms associated 

with a protein by considering topology constraints.  Using this database, the system can easily 

map query proteins to other similar structures.  The team could potentially achieve an increase in 

speed simply by moving IPSA's large data structures such as the M-tree and inverted-protein 

onto the GPU.  The team outlines areas with GPU-based computation potential in Section 5.3.1. 

1.2.2 General GPGPU Techniques 
Modern day GPUs specialize in performing large floating-point matrix arithmetic in 

small amounts of time.  Much of the power of the GPU has evolved due to the switch from 

hardwired pipelines to programmable components.  For example, the NVIDIA GeForce FX 

replaced register combiners with programmable pixel shaders.  GPUs also specialize in parallel 

processing, and it is because of this specialization that they are so effective in GPGPU.  For 

example, modern GPUs can compute 330 billion floating-point operations per second.  However 

GPGPU is not the best choice for many algorithms in their original form.  Many of these 

algorithms have to be reworked or have a translator made to function on a GPU. [6] 

GPGPU techniques must follow the stream programming model to make use of the 

parallelism within GPUs.  GPGPU applications implement several basic operations of the stream 
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programming model.  These operations are map, reduce, scatter and gather, scan, stream 

filtering, sort, and search. 

 Map and reduce are two simple operations.  Map is essentially applying a function to a 

given set of data elements.  For example, if one has a stream of data in the range [0.0, 1.0), then a 

map operation can convert the values into the range [0, 255] by multiplying each element by 256 

and then taking the floor of the result. 

Reduce computes a smaller stream from a larger stream.  An example application of 

reduce is when calculating the largest element from a dataset.  A fragment program reads two 

values and writes the largest one to the pass' result buffer.  The process continues in parallel until 

the stream contains only one element, which is the dataset's maximum. 

 Scatter and gather are read and write operations that access memory indirectly.  Scatter is 

the operation for assigning a value to an element of an array.  Gather is the process of retrieving 

an array element's value.  Gather is implemented on a GPU by fetching a pixel from a texture 

using specific texture coordinates.  Due to the design of GPU hardware, a fragment program 

cannot implement scatter.  Instead, developers use several tricks to implement scatter such as 

rewriting the problem in terms of gather or using the vertex processor for scatter operations. 

 The scan and stream filtering operations are also helpful tools.  Given an operator + and 

an array of n elements [a0, a1,…, an-1], scan returns the array [a0, (a0 + a1), …, (a0 + a1 +…+ an-1)].  

The stream filtering operation selects a subset of the overall dataset and only processes on the 

subset.  This technique is useful for simple data partitioning and collision detection. 

 Sorting operations are difficult to implement on fragment processors in current GPUs 

since GPU hardware does not implement scatter and data-dependent operations are difficult to 

implement in parallel processors.  Thus, all GPU-based sorting is impartial to the input data.  
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Many sorting operations are significantly faster on the GPU than on the CPU.  For example, 

PBSN, a cache-efficient GPU-based sorting network algorithm, is almost six times faster than 

the CPU-based Qsort available in the Intel compiler. 

 Searching operations on the GPU are not able to beat CPU algorithms in terms of 

reducing the processing time of a single search.  Instead, the parallelism of the GPU allows 

developers to increase throughput by processing multiple searches at the same time.  Most basic 

searching algorithms such as binary search are possible on the GPU, but algorithms that are more 

complex require specialized GPU data structures. 

1.2.3 Current GPGPU Technologies 
The base technologies for converting algorithms to run on the GPU are the OpenGL 

Shading Language (GLSL) [7], DirectX [8], and Cg [9].  RapidMind [10] and PeakStream [11] 

both offer commercial products for deploying high-performance applications on a variety of 

processors including CPUs, GPUs, and the Cell, while NVIDIA is developing a technology 

called CUDA [12] that is specifically for GPGPU.  Other languages and extensions that are 

available include Sh [13], Shallows [14], Accelerator [15], and BrookGPU [16]. 

GLSL, DirectX, and Cg are all APIs and toolkits for writing graphics programs.  These 

APIs are the base for programming on popular video cards made by ATI and NVIDIA.  GLSL is 

an open standard while DirectX is a proprietary Microsoft product and Cg is a proprietary 

NVIDIA product.  Even though Cg is proprietary, its compiler supports OpenGL's standards and 

thus can create programs that run on both ATI and NVIDIA video cards.  The basis for using 

GLSL, DirectX, or Cg for GPGPU is that one can hijack the graphics processing pipeline and 

force the GPU to perform other tasks instead of rendering graphics.  All other languages, 
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extensions, and commercial products convert code into GLSL or DirectX methods during the 

compilation process. 

RapidMind and PeakStream both offer commercial products for taking advantage of 

various types of processors.  RapidMind is comprised of the former developers of Sh.  Both 

companies provide APIs for C++.  Unfortunately, the products are too costly for the project.  For 

example, PeakStream's API costs $1,000 per GPU on an academic server and $295 per user on 

an academic workstation. 

NVIDIA's CUDA technology is a new technology that enables standard C programming 

on a GPU.  The technology supports both Linux and Windows XP operating systems and 

includes native multi-GPU support.  While CUDA appears to be the most promising technology 

for future GPGPU applications, the technology is currently in closed testing and is not available 

for this project. 

Sh and Shallows are C++ libraries that in simplest terms provide a high-level API above 

GLSL that allows developers to spend less time with the GLSL-specific programming details.  

Accelerator and BrookGPU are both toolkits for taking advantage of GPU processing power 

without requiring developers to learn GPU specific APIs or programming languages.  The team 

is interested in the applicability of Accelerator and BrookGPU to the project because both 

technologies significantly reduce the time required to create GPU programs. 

1.2.3.1 Accelerator Performance 
Accelerator is a library for C# that provides a high level API for performing data 

parallelism operations.  [15] includes a performance evaluation between C# using Accelerator, 

handwritten Pixel Shader 3.0 assembly code, and CPU-based C++ code.  The evaluation 

benchmarks ten operations: sum, matrix-vector multiplication, matrix-matrix multiplication, life, 
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demosaic, convolve, rotate, corner detection, motion estimation, and stereo matching.  Overall, 

the Accelerator code performs within 50% of the speeds of the handwritten Pixel Shader code.  

The Accelerator code performs better than the CPU-based C++ code on seven out of the ten 

operations, but when the Accelerator code performs worse, it performs significantly worse. 

 Accelerator's slow processing is from many design decisions.  Accelerator uses just-in-

time compilation for its fragment processor programs.  This means that the library compiles each 

fragment processor program at runtime, when the fragment program is needed.  Even though the 

library caches these programs for later use, the just-in-time compilation overhead and the 

library's other execution costs take up 9% of the running time on average. 

 Accelerator's worst performance was in the rotate and motion estimation operations.  

These operations involve many gather operations with special out-of-bounds access cases.  

While GPUs have hardware support for gather, the DirectX C# API does not provide access to 

the hardware support.  Thus, Accelerator cannot utilize the GPU's resources while handwritten 

Pixel Shader code has access to this hardware support. 

 While Accelerator is typically faster than the CPU-based C++ code, it is not as fast as 

handwritten Pixel Shader 3.0 code.  Additionally, Accelerator in only available for C#, and thus 

requires a Windows machine running DirectX and the .Net Framework.  For these reasons, the 

team will not use Accelerator for the project. 

1.2.3.2 BrookGPU Performance 
BrookGPU extends C to include stream processing constructs that use the GPU to 

perform calculations.  BrookGPU includes a compiler and a runtime environment that allows 

Brook programs to run on both ATI and NVIDIA GPUs with either OpenGL or DirectX.  Brook 

virtualizes two important stream computing aspects.  OpenGL, DirectX, and Cg limit the number 
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of outputs from a fragment program and limit stream dimensions and size. BrookGPU virtualizes 

these aspects and, for example, allows users to create streams that are not bound by texture 

memory restrictions within the GPU. 

 BrookGPU provides a high-level abstraction of the graphics pipeline through offering 

streams and kernels.  Streams are analogous to textures within GPU memory, but they do not 

have limits on their size.  Kernels are analogous to fragment programs that execute on fragment 

processors within the GPU.  The main difference between kernels and fragment programs is that 

BrookGPU kernels allow for an arbitrary amount of output streams while fragment programs 

have a limit on the number of outputs and the size of textures used. 

 [16] includes a performance evaluation of BrookGPU.  On average, BrookGPU's DirectX 

output is within 80% of hand-coded GPU implementation performance.  BrookGPU's OpenGL 

output is significantly less efficient.  Most of these inefficiency issues are due to the hand-coded 

GPU implementations using problem-specific knowledge to find "shortcuts."  These 

optimizations are not possible when using BrookGPU. 

 BrookGPU is significantly faster than Accelerator.  When using the DirectX runtime, 

BrookGPU is only marginally slower than hand-coded GPU implementations.  Addtionally, 

BrookGPU's abstraction will allow the team to port a larger portion of the IPSA algorithm to the 

GPU within the limited timeframe for the project.  Due to BrookGPU's significant decrease in 

programming time in comparison with using the base technologies of OpenGL, DirectX, or Cg, 

the team will use BrookGPU for porting applicable portions of IPSA to the GPU. 

 

9 



 

1.2.3.3 Cg 
In order to reach the goals outlined in Section 1.3, the project group must choose a 

language that demonstrates the raw power of the GPU for high computation and computational 

biology problems in a short period of time.  As such, Cg presents a programming language using 

C-like syntax and philosophy [9].  Each member of the group has worked extensively with the C 

language and will feel comfortable learning a similar language.  In fact, one of the main reasons 

that the designers of Cg chose to implement an environment similar to C was to provide ease of 

programming to developers since they would feel familiar with the language. 

 Other goals met by the designers of Cg fit well with the project’s purpose to perform 

computation on a GPU, contrary to the hardware’s intended purpose.  Since Cg implements a C-

like interface, it is hardware-oriented while being general purpose [9].  The designers provided 

full support for hardware programming, similar to an assembler language, so that the developers 

could have more power.  Therefore, the project group will have complete control over the 

underlying elements and will be able to demonstrate the best performance that GPGPU 

techniques can achieve for selected computationally intensive problems. 

1.2.4 GPGPU Performance Techniques 
GPGPU developers can use several techniques for improving program performance.  

Most of these techniques require direct programming with OpenGL, DirectX, or Cg.  Three 

examples of GPGPU performance techniques are cache-efficient memory models, the vertex 

processor code motion technique, and GPU clustering. 
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1.2.4.1 Cache-Efficient Memory Models 
Through the use of an intuitive and flexible language, successful GPU computation 

requires the effective representation of data in memory.  Many applications beyond graphics can 

benefit from parallel GPU processing, including database indexes.  These types of programs 

benefit since they can be expressed independently, and the GPU is able to process the same 

function on multiple elements of a two dimensional array.  As shown by the model in [17], 

efficient algorithms achieve a two to five times improvement versus a CPU.  Therefore, if 

researchers ignore the design of the hardware, they will not achieve much increase in speed since 

the GPU is intended for maximum efficiency through independent, simultaneous computation. 

 In order to maintain high throughput, one must develop a system that reduces that 

number of cache misses.  Looking up elements that do not currently reside in the cache creates a 

high overhead.  Therefore, [17] presents a technique that decomposes the input into smaller 

blocks, called quads.  The GPU processes these separately so that a smaller dataset resides in 

memory.  Then, a rendering pass performed at each stage reduces the dataset to its final return 

value.  The project group will use the decomposition technique to reduce IPSA's protein chains 

into smaller pieces that the GPU can most efficiently process.  By following an effective memory 

model, the project group expects to achieve a two to five times speedup on the GPU-based 

portions of IPSA in relation to their original CPU-based counterparts. 

1.2.4.2 Vertex Processor Code Motion Technique 
[18] includes the vertex processor code motion technique for improving the efficiency of 

GPGPU programs.  The technique focuses on the fact that GPUs include both vertex processors 

(VPs) and fragment processors (FPs), but GPGPU programs typically only use fragment 

processors.  By offloading appropriate instructions to the VPs, [18] was able to reduce execution 
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time of a Gaussian filter program by 40% and reduce the FP workload in ten of eighteen GPGPU 

programs tested. 

 Data in the GPU pipeline flows from VPs to rasterization and interpolation to FPs.  The 

key to moving instructions from FPs to VPs is to identify movable instructions.  [18] defined 

movable instructions as instructions that are executable, accessible, equivalent, and independent. 

An instruction is executable if the VP instruction set includes it.  For example, the txld 

instruction is not executable because it is not within the VP instruction set since VPs cannot read 

textures.  Additionally, instructions are accessible if the VP registers can replace the registers 

used on the FPs.  For example, registers on a VP cannot replace sampler registers on FPs because 

samplers involve textures and VPs cannot operate on textures. 

 An instruction is equivalent if the instruction is linear and does not use lower precision 

registers on the VP for high-precision data.  Since FPs receive linearly interpolated data from 

VPs, one can only move linear operations to VPs.  If an operation is not linear, then the 

rasterization and interpolation process between VPs and FPs in the GPU pipeline with mangle 

the data.  Additionally, one cannot use lower precision registers within VPs to pass high-

precision data to FPs because this will result in rounding errors. 

 An instruction is independent if it does not depend upon any unmovable instruction 

above it in the fragment program.  For example, if an instruction I1 is dependent upon a previous 

instruction that is not movable, then I1 is not movable.  This restriction is obvious because the 

previous instruction must execute before I1 and moving I1 to VPs will cause it to execute before 

the instruction that it depends upon. 

 [18] found that their technique of moving instructions from FPs to VPs improved the 

performance of ten out of eighteen GPGPU programs tested.  The technique did not work for all 
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programs because offloading work from FPs to VPs increases the amount of data passed between 

the two.  During this passing of data from VPs to FPs within the GPU pipeline, the rasterization 

and interpolation process became the bottleneck of some of the applications.  While the 

technique can certainly increase efficiency of GPGPU programs, implementing the technique 

requires extensive knowledge of GPU programming.  Thus, the team will not attempt this 

technique during the project. 

1.2.4.3 GPU Clustering 
[19] discusses the design, implementation, and results of using the Lattice Boltzmann 

Model (LBM) for flow simulation on a GPU cluster.  The GPU cluster uses 32 nodes that are 

connected by a 1 Gigabit Ethernet switch.  Each node has two Pentium Xeon 2.4GHz processors, 

2.5GB of memory, and one GeForce FX 5800 Ultra with 128MB of memory.  The GPU cluster 

executed each step of the simulation 4.6 times faster than [19]'s CPU cluster implementation. 

 [19] first developed an LBM algorithm on a single GPU.  The algorithm ran 8 times 

faster on the GeForce FX 5900 Ultra when compared to their CPU version running on a Pentium 

IV 2.53GHz.  One can easily visualize the design of the LBM used for the single GPU algorithm 

as a rectangle in three dimensions. 

 When scaling the LBM onto the GPU cluster, [19] roughly split the domain into cubes.  

Each node processes one cube.  The data along the borders of each cube have to pass to 

neighboring GPUs for computation.  This introduced a bottleneck while transferring data from a 

node's GPU to its CPU, and then across the network. 

 The primary challenge for [19] was minimizing the cost of communication between 

nodes.  [19]'s cluster was hindered by using an AGP 8x bus, which only has a peak upstream of 

133 MB/sec.  They were also hindered by the fact that each GPU only had 128 MB of memory. 
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 According to the team's test results, between 24 to 28 nodes was optimal.  With more 

than 28 nodes the performance dropped significantly due to network collisions and other issues.  

In an effort to combat the network issues, the team set up a scheduling routine that made sure 

that not all of the nodes were transmitting border data at the same time. 

 Overall, [19] concluded that the price per performance of their GPU cluster was 

significantly better than purchasing a comparable CPU cluster.  Today, with the performance 

increases in GPUs such as significantly more GPU memory and processing cores, the 

performance of [19]'s GPU cluster would only be greater.  While a GPU cluster is not within the 

budget for the project, the promise of GPU clusters is certainly interesting. 

1.3 Goals and Objectives 
The team's ultimate goal is to port the most promising portion of IPSA into a working 

GPU-based prototype that performs at least twice as fast as its CPU-based counterpart.  The 

ultimate goal of the project is certainly lofty, especially considering that none of the team 

members has any experience working with GPUs.  Since the team is lacking in general 

experience with GPUs, the team must meet many preliminary learning, discovery, and testing 

goals before the team attempts to tackle the final goal. 

First, the team will review the GPU programming tutorials in [20] and [21].  These 

tutorials demonstrate the basic concepts of using graphics processing pipeline to perform non-

graphics related tasks.  All of the tutorials that the team will review use Cg to complete the GPU 

programming tasks.  After completing the tutorials, the team will produce GPGPU programs that 

demonstrate the best performance possible for select GPU-based algorithms barring hand-writing 

Pixel Shader 3.0 assembly code.  These GPGPU case study programs are the deliverables of this 

first phase. 
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Next, the team will examine the BrookGPU example code and explanations in [16].  The 

team will learn to write simple GPU-based programs that implement general GPGPU techniques 

such as map and reduce.  The GPGPU programs that demonstrate map and reduce are the 

deliverables for the second phase. 

Once all team members have a grasp of GPGPU techniques and BrookGPU 

programming, the team will begin analyzing the feasibility of porting IPSA to the GPU.  This 

will include a thorough study of the algorithm so that all team members understand the 

processing steps and data structures involved.  During this third phase, the team will develop a 

profiling program, which will analyze the runtime spent in each section of IPSA and determine 

the most lucrative portions of IPSA for porting to the GPU. 

During the final phase of the project, the team will implement on the GPU the portion of 

IPSA that has the most promise for parallelized processing.  The team will also develop a 

prototype that demonstrates how the IPSA algorithm could transfer and receive data from the 

GPGPU program.  The final deliverables of the project are the GPU-based program that 

implements a portion of IPSA and the IPSA-GPU interaction program that demonstrates how 

IPSA will access the GPU. 

1.4 Overall Approach 
The team will follow the waterfall model for the project.  Since the project consists of 

porting a portion of an existing, well-defined algorithm to run on a GPU, the waterfall model is 

the best choice for a development model.  After completing the initial learning and discovery 

goals listed under the Goals and Objectives section, the team will follow the general waterfall 

process model as shown in Figure 1.4a. 
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In addition to the waterfall model, the team will use a version of the iterative 

development model as shown in Figure 1.4b for determining the best possible translation of 

IPSA 's data structures into comparable data structures for the GPU and for determining the best 

fragment programs for performing the GPU computations.  This process will include many 

design, implementation, and evaluation phases as the team refines the data structure and 

fragment program designs to achieve maximum performance.  Since the design of the data 

structures is one of the most important issues to consider with GPGPU methods, this iterative 

development will be a large portion of the project. 

 

 

Figure 1.4a: The Waterfall Model 

 

Figure 1.4b: 
The Iterative Development Model 

Graphics taken from Wikipedia.com under the Creative Commons Attribution ShareAlike License v. 2.5. 

 

 The team will use Cg and BrookGPU for developing the project's GPU-based programs.  

This decision is based on recommendations from Robert Luke and Derek Anderson, both 

graduate students that have experience porting algorithms to the GPU.  The development, testing, 

and production environment includes two different graphics cards: an NVIDIA 8800 GTX with 
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128 processing cores and 768 MB of memory and an ATI x800 XT PE with 16 processing cores 

and 256 MB of memory. 

1.4.1 System Diagram 
 The program will include many modules as detailed in Figure 1.4.1.  An outside source 

such as an existing program within ProteinDBS will request to run the protein retrieval algorithm 

with a given set of parameters.  The IPSA Request Handler, a component running on the CPU 

that is a modified version of the program that the original IPSA developer created, will receive 

the request and ultimately return the result.  The IPSA Request Handler will load the nine IPSA 

index files and send the proteins to process to the GPU Program Loader.  The GPU Program 

Loader will create the necessary data structures on the motherboard memory and load the GPU 

program onto the GPU. 

 Once the data is loaded onto the GPU, the goal of the GPU program is to execute the 

algorithm while minimizing the amount of references to non-GPU memory or procedures.  The 

Retrieval Initializer will generate the GPU data structures that correspond to the CPU data 

structures created earlier.  Once initialization of the memory is complete, the Stream Process 

Distributor will begin executing the algorithm. 

 The Stream Process Distributor executes the kernel programs that run on each data point 

in the GPU's memory.  The component sends the datasets to be processed to the stream 

processors (pixel shaders) on the GPU.  Each of these stream processors produces results that the 

Stream Processor Distributor receives and aggregates accordingly. 

Once the stream processing is complete, the Result Handler component on the GPU sends 

the GPU Program Loader the result.  The GPU Program Loader stores the result in the 

motherboard memory and sends the GPU result to the modified IPSA algorithm.  The modified 
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IPSA algorithm executes the CPU-based IPSA algorithm while using the results that the GPU 

produced for the specific calculations that the team ported to the GPU.  Once the Modified IPSA 

component sends the IPSA Request Handler the final result, the IPSA Request Handler sends the 

result to the outside source that requested the retrieval. 

 

Figure 1.4.1: The Component Diagram 
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1.4.2 Advantages and Disadvantages 
 The advantage of the above component layout is that the layout ensures that the GPU-

based algorithm minimizes its interaction with the CPU and motherboard memory.  The key to 

gaining a speedup is to reduce the amount of GPU-CPU interaction.  One needs to design the 

system to run on the GPU for the highest possible percentage of overall processing time. 

 The main disadvantage to the team's approach is the difficulty in coordinating efficient 

data structures between the GPU and CPU memory.  This disadvantage is acceptable because it 

is currently the only way to use GPUs for general purpose computing.  Since GPUs cannot store 

objects and data in the same way as CPU and motherboard memory, one must create a 

translation between the two representations.  This translation and choice of data representation 

on the GPU is critical to the efficiency of GPU-based algorithms. 

1.4.3 Costs 
 The most obvious costs of the project are the costs of the hardware.  An NVIDIA 8800 

GTX alone currently costs 575 dollars while an ATI x800 XT PE costs 250 dollars [22].  The 

hardware costs are definitely expensive for a college student, but Dr. Shyu's budget can 

sufficiently handle the cost.  Section 2.3 presents a more thorough cost analysis. 
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2 Requirements Analysis 

2.1 System Requirements and Constraints 
The system has many requirements and constraints including required hardware, quality 

and reliability requirements, human factors, required software libraries, and performance 

requirements.  While all constraints are important, the human factors in Section 2.1.3.2 had the 

largest impact on the project's timeline and goals.  The time requirements in Section 2.3.1 were 

also significantly affected by the human factor constraints. 

2.1.1 Operating Environment 
The team will use two development machines as detailed in Table 2.1.1.  The team will 

use multiple development machines in order to alleviate the human-based constraints described 

in Section 2.1.3.2 and to meet the project goals in the limited time span.  Dr. Shyu provided 

Computer 1 while Todd Sullivan, one of the team members, provided Computer 2.  Since both 

video cards support OpenGL and DirectX and both operating systems provide proper drivers for 

their respective video cards, the Cg and BrookGPU programs will execute correctly on both 

machines. 

 

 Computer 1 Computer 2 
Video Card NVIDIA 8800 GTX ATI x800 XT PE 
     Processing Cores 128 16 
     GPU Memory 768 MB 256 MB 
CPU Intel Pentium 4 2.8 GHz AMD64 3400+ 
CPU Memory 4 GB DDR400 3 GB DDR400 
Operating System Fedora Core 6 (Linux) Windows XP/Cygwin 
 

Table 2.1.1: The Development Machines 

 

As described in Section 1.2.3.2, BrookGPU's DirectX runtime is significantly faster than 

its OpenGL runtime.  While this does not affect the development phase of the project, the 

restriction certainly affects the performance of the BrookGPU programs.  Due to time and budget 
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constraints, the team cannot install a Windows operating system on Computer 1.  Instead, the 

team has to use a free Linux distribution, which does not provide DirectX.  Thus, in a real-world 

BrookGPU-based IPSA program, Dr. Shyu should run the program in a Windows environment 

in order to achieve maximum performance. 

While BrookGPU's DirectX runtime is faster than its OpenGL runtime, working in 

Windows comes with its costs.  In order to take advantage of widely available Linux libraries 

and other tools, the team must compile and execute the BrookGPU program using Cygwin, a 

Linux-like environment for Windows.  As a result, in order to achieve the performance gain from 

the BrookGPU DirectX runtime, the team must manage working in an entwined Windows/quasi-

Linux environment. 

 The team will not need to manage any web servers or database environments.  IPSA's 

data structures are stored as nine index files.  Each index file is a serialized Java object.  IPSA's 

own algorithms and tools maintain its database.  The team's GPU-based program will need to 

access IPSA's data structures, but the program will not need to alter them in any fashion.  Thus, 

the team can access IPSA's local database by calling methods in Java in a similar fashion to 

Java's built-in data structures such as Vector and TreeMap. 

2.1.2 Market Users and Characteristics 
In compliance with U.S. regulations, the team will not violate any patents held by other 

GPGPU researchers and companies.  The tools that the team will use for the project, such as Cg 

and BrookGPU, do not impose any regulatory or license-based restraints on the project.  Sections 

1.1.1 and 1.1.2 describe the project's market demand and customer requirements respectively. 

21 



 

2.1.3 Environmental Constraints 
In order to satisfy customer requirements, the team must address quality and reliability 

constraints.  Due to the nature of the system, the GPU-based program meets suitability and safety 

requirements because they are built into the original IPSA algorithm and, provided the GPU-

based program is a direct port of portions of IPSA, are not actual requirements for the project.  

The team must also accommodate many human factors that are uncontrollable and sometimes 

unpredictable.  The majority of these human factors reduce the time available for analyzing 

IPSA, designing the GPU-based solution, and implementing the prototype. 

2.1.3.1 Quality and Reliability 
The GPU-based solution must reliably provide similar results in comparison with the 

original algorithm.  The original IPSA algorithm, written in Java, uses double precision floating 

point numbers.  Current video cards use single precision floating point numbers.  Due to this 

constraint, the GPU-based computations will offer less precision than the original CPU-based 

computations.  This constraint is unavoidable in current hardware.  The team hopes that since all 

computations will be less precise, the resulting values will remain the same in relation to each 

other.  Since the resulting values will remain the same relative to each other, the ranking scheme 

will still return the same result. 

2.1.3.2 Human Factors 
Human factors severely reduced the amount of time available for the third and fourth 

phases of the project as described in Section 1.3.  The team did not receive the IPSA source code 

until April 2.  Upon receipt of the algorithm, the team did not receive the algorithm's dataset until 

April 6.  The source code contained no inline comments and no documentation explaining the 

process of compiling and executing the various IPSA modules. 
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Additionally, the source code did not initially compile correctly because the team lacked 

several required libraries and the source code had multiple locations of hard-coded, system-

specific paths.  These library dependencies and hard-coded paths were not disclosed in any 

documentation and IPSA's original creator did not remember all of the locations where paths 

were hard-coded.  As a result of these issues, the team was not able to successfully compile and 

execute IPSA until April 11. 

Aside from human factors pertaining to source code issues, the team did not receive the 

primary development machine, Computer 1, until April 2.  The machine had Red Hat Linux 

preinstalled, which was partially corrupted and unusable.  Thus, the team spent a few days trying 

to fix the system.  Once the proposition of fixing the system became futile, the team reformatted 

Computer 1's hard drive, installed Fedora Core 6, and installed all of the required libraries as 

detailed in Section 2.1.5.  The primary development machine was functional on April 5. 

Due to these human factors, the team had approximately two and a half weeks to profile 

IPSA, choose a suitable section to port to the GPU, and develop the prototype.  The team 

remained steadfast (to no avail) in requesting the required source code, dataset, and development 

machine prior to the delivery of the items.  To counter these human factors, the team spent the 

time before delivery of the items learning to program in Cg and BrookGPU and completing the 

first and second phases of the project's goals as described in Section 1.3.  The team also 

countered these limiting factors through time management that allowed the team members to 

dedicate significant portions of each day to the project during the two-week period before the 

project's presentation at the Advisory Board. 
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2.1.4 System Components 
The primary system components are the IPSA index files, the Java-based IPSA programs, 

and the GPU-based program that the team will develop.  The team will develop a modified 

version of the Java-based IPSA algorithm that demonstrates how to use the GPU-based program 

for performing select calculations.  The team will not manipulate the IPSA index files.  Instead, 

the team will access the indexes through the Java-based IPSA program. 

2.1.5 Software Interfaces and Libraries 
The team will use Cg and BrookGPU to develop the deliverables described in Section 

1.3.  These libraries require OpenGL or DirectX to run.  As covered in Section 2.1.1, both 

development machines contain support in hardware and software for OpenGL, while Computer 2 

contains support for DirectX.  When using OpenGL, the Cg and BrookGPU programs also both 

require GLUT, the OpenGL Utility Toolkit, and GLEW, the OpenGL Extension Wrangler. 

 Since the IPSA algorithm is written in Java, the team will use a modern Java Virtual 

Machine for Java 1.5 to execute the IPSA algorithm.  Java includes constructs such as the 

Runtime.exec() method for executing operating system-specific commands.  The team will use 

Runtime.exec() to execute and control the GPU-based program from within Java. 

Since this method uses commands specific to the machine's operating system, the team 

will have to use different commands for invoking the GPU-based program on a Linux machine 

versus a Windows machine.  The primary difference is that in Windows the team will have to use 

Runtime.exec() to load a new Cygwin instance and then load and control the GPU-based 

program from within the Cygwin process.  On a Linux machine the team will simply use 

Runtime.exec() to load and control the GPU-based program directly. 
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2.1.6 Communication Interfaces 
The team will manage the communication between the Java-based program and the GPU-

based program using the features of the Process object in Java.  After loading the GPU-based 

program using the Runtime.exec() method in Java, the team will control the GPU-based program 

by using the process' standard input and output streams.  Java's Process object allows the team to 

read from the GPU-based program's standard output and write to its standard input as if the GPU 

program is running in a console and the Java program is the keyboard and screen. 

Cg and BrookGPU manage the communication interface between the CPU processes and 

the GPU processes.  Additionally, the IPSA programs manage the communication channels 

responsible for receiving retrieval requests and returning results.  Thus, the team has little 

oversight responsibilities and abilities in regards to these communication interfaces. 

2.1.7 Hardware Interfaces 
Table 2.1.1 details the hardware for each development system.  The only notable 

interface for the project is the connection between the video card and the CPU in each machine.  

Computer 1 contains a PCI Express 1.0 bus that connections the 8800 video card with the CPU.  

Computer 2 uses an AGP 8x bus for connecting the x800 video card with the CPU.  The PCI 

Express 1.0 bus has a maximum data rate of 4 GB/s while an AGP 8x bus has a maximum data 

rate of 2.1 GB/s.  While these constraints limit the maximum performance that the GPU 

programs can achieve, they do not affect the design or development details of the GPU-based 

programs. 
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2.1.8 System Maintenance 
The team must provide full documentation for compiling and executing the deliverables 

outlined in Section 1.3.  Since none of the team members will be available after the project's 

completion, the documentation must provide enough information for a new team to continue the 

research with as few relearning periods as possible.  In order to maintain the system, the 

administrator will either need prior experience with GPGPU or be willing to learn GPGPU 

techniques.  The team strongly recommends that any maintenance staff at least have experience 

with graphics programming using OpenGL or DirectX. 

2.2 Performance Requirements 
The portion of IPSA that the team ports to the GPU must execute faster than performing 

the calculations on the CPU.  The definition of "faster" is important because the GPU cannot 

outperform the CPU when executing simple calculations on small vectors or matrices.  For 

example, the GPU performs significantly worse in comparison to the CPU when performing 

calculations on three-by-three matrices because the GPU is designed to process large quantities 

of data at the same time.  Thus, determining which is "faster" by having each program perform 

one protein chain comparison at a time will always result in the CPU-based program being faster. 

In order to take advantage of the GPU, the GPU-based program should pack thousands of 

three-by-three matrices into a single matrix.  Instead of performing the calculation on one three-

by-three matrix at a time, the GPU-based program should calculate all of the results 

simultaneously.  The team should then compare the time elapsed for this bulk processing with 

the average time from the CPU-based program's sequential processing of an equal number of 

three-by-three matrices.  Thus, the pertinent performance requirement is that the GPU-based 
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program processes all of the protein chains in bulk faster than the original CPU-based section of 

code processes the protein chains sequentially. 

2.3 Resource Requirements 
The human factors significantly affected the time requirements for the project.  The team 

also required many important resources in Section 2.3.2, such as Computer 2, because of the 

environmental constraints.  The project's facilities were fairly small for the team size, but the 

accommodations were paid for by other projects and thus acceptable. 

2.3.1 Time 
As described in Section 2.1.3.2, Human Factors, time management is crucial for adapting 

to unpredictable events.  Each team member averaged eight hours per week over a ten-week 

development period, totaling 320 work hours.  At an average hourly rate of fifty dollars per hour, 

the time costs are $16,000, as detailed in Table 2.3.4. 

Due to the environmental constraints in Section 2.1.3, each team member did not 

consistently work eight hours each week.  Instead, the team's work hours included a sharp, 

sustained rise during the three and a half weeks at the beginning of April.  In fact, over the 

weekend of April 21st and 22nd two team members practiced Extreme Programming [23] and 

each clocked two twelve to fourteen hour work days in a row.  These irregular work patterns 

were necessary to accommodate the unavoidable constraints described in Section 2.1.3.2 and 

were achieved by early planning that eliminated other obligations of each team member during 

the heavy development period. 
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2.3.2 Resources 
Aside from the IPSA source code and protein dataset, the only resources required are the 

development machines detailed in Table 2.1.1.  Computer 1's video card cost $575 while its 

other parts total $1,200.  Computer 2's video card cost $250 while its other parts total $950.  The 

total resource costs are $2,975, but an important note is that most of the development machines' 

parts were reused parts from other projects. 

2.3.3 Facilities 
The team requires at least one location where team members can operate both 

development machines side-by-side.  Dr. Shyu's student cubicle space meets this requirement.  

The project does not incur additional expenses from using the cubicle space because the 

particular cubicle is not in use by another project and Dr. Shyu's other projects pay for the costs 

of the space. 

2.3.4 Budget 
Employment $16,000
Computer 1 $1,775
Computer 2 $1,200

Total $18,975
 

Table 2.3.4: The Cumulative Project Budget 

2.4 Evaluation Metrics 
The project's evaluation metrics are the production of the deliverables described in 

Section 1.3 and a performance evaluation of the GPU-based IPSA Compute_RMSD_D1 function 

that shows that the function is faster than its CPU-based counterpart.  Section 2.2 includes the 

project's definition of the term "faster" and describes how the team will assess the GPU-based 

program's performance in comparison with the CPU-based calculations.  The process is a 

complete success if the team produces the deliverables and positive performance evaluation. 
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3 Design Specification 
The majority of the project's design process centers around designing data structures and 

designing software modules.  Since IPSA includes its own data structures, the data structure 

designs involve translating IPSA's data structures into GPU-compatible data.  The software, on 

the other hand, involves modifying IPSA's program flow to include GPU computations and 

designing software for profiling IPSA and for performing the GPU-based calculations. 

3.1 Hardware 
The project does not require any specialized hardware designs, which allowed the team to 

focus primarily on software designs.  While the team did not create any hardware designs, the 

project requires knowledge of the GPU pipeline and the general design of video cards.  Section 

1.2 discusses this general GPU design. 

3.2 Data Requirements 
IPSA requires many different data sources as described in Section 3.2.1.  The team's 

GPU-based computations involve one particular data structure – a protein chain consisting of an 

array of doubles.  Sections 3.2.2 and 3.2.3 describe translating these protein chains into GPU-

compatible data. 

3.2.1 IPSA Data Sources 
The IPSA algorithm includes nine data files as shown in Figure 3.2.1.  These nine data 

files include two protein lists and seven indexes.  IPSA stores these data structures as serialized 

Java objects.  The project's goals do not require the team to alter these data structures in any way.  

Instead, the team only has to access the proteins in the data structures using method calls similar 

to Java's built-in Vector and TreeMap classes. 
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Figure 3.2.1: IPSA Data Sources 

3.2.2 Translation to a GPU Datatype 
In order to process the proteins on the GPU, the team must translate the protein's 

structure in Java into a suitable structure in GPU memory.  IPSA stores the protein chains as 

arrays of doubles (double precision floating point numbers) that are either thirty or forty-five 

elements long.  Since current GPUs can only process floats (single precision floating point 

numbers), the protein chains will lose half of their precision in GPU memory. 

Additionally, GPUs store four floats at each pixel on a texture.  These four floats are for 

the red, green, blue, and alpha values of the pixel.  Thus, each element of an array on the GPU is 

considered a float4, which can be thought of as a C struct with floats denoted by pixel.r, pixel.g, 

pixel.b, and pixel.a.  Since IPSA calculates most chain values in groups of three, the GPU arrays 

use the red, green, and blue floats while disregarding the alpha float. 

3.2.3 Matrix Translations 
When performing comparisons on chains, IPSA uses many three-by-three matrices.  

Since the GPU's main skill is performing calculations in bulk, the GPU-based algorithm needs to 

pack many three-by-three matrices into a single giant matrix.  Figure 3.2.3 demonstrates this 

process of storing many three-by-three matrices as a single texture on the GPU. 
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Figure 3.2.3: Three-by-Three Matrix Translation 

First, the three-by-three matrices are placed in a larger square matrix with sides that are a 

multiple of three.  Second, each row of each three-by-three matrix is then placed into a single 

float4 with the float4s red value storing the row's first element, green value storing the row's 

second element, and blue value storing the row's third element.  These float4s are arranged in 

CPU memory as a one-dimensional array of float4s. 

Figure 3.2.3 demonstrates this second step as the first arrow in the center of the figure.  

The top row of the blue three-by-three matrix collapses into the first float4 element in the 1D 

array.  Similarly, each three-by-three row collapses into the single element in the 1D array that 

contains the same color as the original row of floats. 

After creating a one-dimensional array of float4s in CPU memory, the array is written to 

a texture in GPU memory as shown by the second array in Figure 3.2.3.  While writing the array 
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to a texture in GPU memory, the one-dimensional array wraps around into a two-dimensional 

texture.  The resulting 2D texture is three times as long as it is high. 

For clarity, Figure 3.2.3 demonstrates the process with a two-by-two matrix of three-by-

three matrices.  In reality, the second step (first arrow in the figure) writes the first row of three-

by-three matrices before moving to the second row.  Thus, on a larger set of three-by-three 

matrices the matrix denoted by orange is not placed next to the matrix denoted by green. 

3.2.4 Protein Chain Translations 
Since the GPU needs to compute many protein chain comparisons at once, the GPU also 

needs to pack protein chains into a single large texture.  As stated earlier, protein chains are 

either thirty or forty-five floats long.  Thus, each protein chain requires either ten or fifteen 

float4s where each float4 contains three floats in the RGB values. 

For efficiency reasons, the large texture containing these chains needs to store each chain 

as a symmetric matrix of float4s.  The smallest symmetric matrix that contains at least fifteen 

elements is a four-by-four.  Figure 3.2.4 shows how multiple protein chains map into the large 

texture. 

 
 

Figure 3.2.4: Protein Chain Mapping into Texture 

32 



 

The colored blocks in Figure 3.2.4 denote float4s of the texture that each chain occupies.  

The white blocks are float4 elements that contain all zeroes and are necessary wasted space.  The 

blue, green, and orange chains are thirty floats long.  The last chain is forty-five floats long.  

Each thirty-float chain wastes six float4s while each forty-five-float chain wastes one float4. 

3.3 Software 
The project's software designs include the IPSA Profiler, Java-C++ Interaction, and the 

Compute_RMSD_D1 function.  The IPSA Profiler and Java-C++ Interaction programs will 

integrate into the original IPSA program.  The Compute_RMSD_D1 function is a GPU-based 

program that is a translation of IPSA's Compute_RMSD_D1 function. 

3.3.1 IPSA Profiler 
The IPSA Profiler's purpose is to provide a convenient method for recording the 

processing time of each section of IPSA and analyzing the results.  While analyzing a program, 

the profiler maintains a stack of each layer of executing code.  The layer on the top of the stack is 

the current, most narrow section of code that is executing in the program. 

When entering a new section of the program, the profiler places a new layer on the top of 

the stack.  The profiler records the new layer's start time, depth, and layer number when adding 

the layer to the stack.  When exiting a section of the program, the profiler pops off the layer at 

the top of the stack.  The profiler records the popped layer's end time and writes the layer's 

information to the current session's log file.  The profiler also maintains execution time totals for 

each layer in relation to its name and its path. 

Once the program completes execution, the profiler sends the log file to an analyzer that 

generates a summary report of the profile.  The analyzer creates a plain-text report that displays 

total time by layer, percent total time by layer, total time by layer with respect to its path, and 
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percent total time by layer with respect to its path.  The analyzer sorts these values so that the 

report clearly shows the sections of the program that consume the majority of the execution time.  

3.3.1.1 Class Diagram 
The IPSA Profiler contains three classes as shown in Figure 3.3.1.1.  The Profiler class 

and ProfileAnalysis class are public classes.  The Layer class is an internal class of the Profiler 

class. 

When entering a new section of a program, the program calls the Profiler class' push 

method.  When exiting a section of a program, the program calls the Profiler class' pop method.  

The Profiler class' close method writes the final profile to disk. 

 

 
 

Figure 3.3.1.1: IPSA Profiler Class Diagram 
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3.3.1.2 Data Flow Diagram 
Figure 3.3.1.2 illustrates the activity of an instance of the Profiler class when profiling a 

program.  The actions correspond to the previous English language description of the IPSA 

Profiler.  The Profile Analysis class does not need to a data flow diagram because the process 

simply involves parsing a text file, calculating percents, sorting the results, and output the sorted 

results. 

 
 

Figure 3.3.1.2: IPSA Profiler Data Flow Diagram 
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3.3.2 Java-C++ Interaction 
Figure 3.3.2 illustrates the control flow of the original IPSA algorithm.  The program 

loads the index objects from disk as serialized Java objects, sends the proteins to a Rank Proteins 

procedure, and then sends the protein scores to a Find Best Score procedure.  The Find Best 

Score procedure sorts the scores in descending order and outputs the results. 

 
 

Figure 3.3.2: Java-C++ Interaction High-Level Process Diagram 

IPSA's designer implemented the algorithm in Java.  Regardless of the library or method 

used for GPGPU, the GPU-based program is ultimately a C++ application.  In order to integrate 

the two, the Java program needs to start and control the C++ application. 

The Java program starts the C++ program by executing an operating system-specific 

command and attaching the new process to a Process object.  The Java program then extracts the 

input and output streams from the Process object.  The Java program uses the output stream in a 
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similar way to a human using keyboard input to a command line program.  The Java program 

uses the input stream to read data from the C++ program. 

When the C++ program reads from its standard input, it reads commands sent to it by the 

Java program through the Process object's output stream.  Similarly, when the C++ program 

writes to its standard output, it writes data to the Process object's input stream.  This process is 

similar to connecting programs together using sockets.  The difference is that neither program 

has to know anything about sockets and the C++ program is completely oblivious to who 

controls it.  Thus, when testing developers can execute the C++ program from the command line 

and provide input using the keyboard. 

Once the Java program starts the C++ program, it provides the C++ program with the list 

of protein chains to compare.  The C++ program simultaneously computes all of the 

comparisons.  Once the computations are complete, the C++ program sends the results to the 

Java program.  The Java program stores all of the results and begins the normal IPSA algorithm.  

Whenever the Java program's execution reaches a computation that the C++ program calculated, 

the Java program retrieves the result from memory instead of computing the result with the CPU. 
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3.3.2.1 High-Level Process Diagram 

 
 

Figure 3.3.2.3: Java-C++ Interaction High-Level Process Diagram 
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3.3.3 Alternative Java-C++ Interaction 
Alternatively, the Java program could send a protein chain comparison request to the 

C++ program when the Java program needs the comparison result.  The two programs would 

communicate in the same way, but instead of bulk processing the comparisons in the beginning 

of the algorithm, the C++ program would process each comparison as they are needed.  Figure 

3.3.3.1 depicts this alternative design. 

3.3.3.1 Alternative High-Level Process Diagram 

 
 

Figure 3.3.3.1: Alternative Java-C++ Interaction High-Level Process Diagram 
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3.3.3.2 Advantages and Disadvantages 
The primary disadvantage to the original Java-C++ interaction design in Figure 3.3.2.3 is 

the high memory usage.  While the C++ program is calculating protein comparisons, the C++ 

program and the Java program both have all of the protein chains stored in memory.  Once the 

C++ program finishes calculating the comparisons, the Java program stores the results in 

memory for the entire duration of the IPSA algorithm. 

The alternative design eliminates this memory usage issue because the C++ program only 

stores the two proteins that it is currently comparing.  Additionally, the Java program does not 

store all of the results in memory for the entire algorithm.  Instead, the Java program only stores 

one comparison result at any point in time. 

Unfortunately, the alternative design does not take advantage of the GPU's ability to 

calculate thousands of protein comparisons simultaneously.  While requiring less memory, the 

alternative design has significant performance issues.  Thus, the higher memory usage of the 

original design is necessary to take advantage of the GPU's bulk computation ability. 

3.3.4 The Compute_RMSD_D1 Function 
Section 5.3.1 describes the results of profiling IPSA with the IPSA Profiler.  The results 

of the profiling clearly show that the Compute_RMSD_D1 function within IPSA has the most 

potential for GPU-based computation.  The Compute_RMSD_D1 function performs a 

comparison on two protein chains.  Each protein chain is either thirty or forty-five floats long.  

The algorithm produces many intermediate three-by-three matrices during the process.  The 

result is a single float. 
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3.3.4.1 Algorithm 
The following bullets and pseudo code describe the Compute_RMSD_D1 algorithm.  The 

input chains that the algorithm compares are denoted by chain8 and chain9.  All of the 

calculations are matrix calculations.  Most of the calculations perform computations on three 

different lines of the matrices at the same time.  The pseudo code is a broad generalization of the 

actual process for one comparison.  The GPU-based version of the algorithm must adapt each 

computation to work on a two dimensional array containing thousands of comparisons that are 

computed simultaneously. 

1) Calculate the mean of each chain 

mean8 = Sum( chain8 ) / Size( chain8 ); 
mean9 = Sum( chain9 ) / Size( chain9 ); 

 
2) Shift each chain's floats by its corresponding mean values. 

PointsOf( chain8 ) = PointsOf( chain8 ) – mean8; 
PointsOf( chain9 ) = PointsOf( chain9 ) – mean9; 

 
3) Calculate a three-by-three matrix tR. 

Row1( tR ) = Sum( PointsThatAreMultiplesOfThree(chain8) * chain9 ); 
Row2( tR ) = Sum( PointsThatAreMultiplesOfThreePlus1(chain8) * chain9 ); 
Row3( tR ) = Sum( PointsThatAreMultiplesOfThreePlus2(chain8) * chain9 ); 

 
4) Transpose tR into R. 

R = Transpose( tR ); 
 

5) Calculate the three-by-three matrix tR * R. 

tRR = MatrixMultiply( tR, R ); 
 

6) Calculate the eigenvalues mu and eigenvectors a of the tR * R matrix. 

mu = GetEigenvalues( tRR ); 
a = GetEigenvectors( tRR ); 

 
7) Calculate and normalize the b vectors. 

b = Sum( R * ColumnsOf( a ) ) / SquareRoot( mu ); 
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8) Calculate the rotation matrix tU using the b vectors and the eigenvectors a. 

tU = ColumnMultiply( b, a ); 
 

9) Transpose tU into U. 

U = Transpose( tU ); 
 

10) Calculate the root mean square error. 

tempchain = Sum( ColumnsOf( chain9 ) * Columns of U ); 
rms = Sum( Square( chain8 -  tempchain ) ); 

 
11) Return the root mean square deviation. 

rmsd = SquareRoot( rms / chain_size ); 
 

3.3.4.2 Eigenvalues and Eigenvectors 
Step 6 in Section 3.3.4.1 involves calculating eigenvalues and eigenvectors.  The process 

of computationally determining a matrix's eigenvalues and eigenvectors is complicated.  This 

process requires more time than the project's constraints allow.  Thus, the GPU-based prototype 

does not calculate the eigenvalues or eigenvectors.  To ensure the accuracy of the output, the 

team will hardcode these values while testing the program.  To ensure an accurate performance 

evaluation, the team will remove the eigenvalue and eigenvector computation time from the 

execution time of the CPU-based algorithm as described in Section 5.3.2. 

3.4 Testing Methods 
The team will use comparisons between program output and either hand-determined 

correct output or output from the original IPSA program to determine whether each piece of 

software is working correctly.  The IPSA Profiler and Java-C++ Interaction will use hand-

determined output.  The Compute_RMSD_D1 function will naturally use the output from the 

original IPSA function. 

42 



 

3.4.1 IPSA Profiler 
The team will test the accuracy of the IPSA Profiler by running the profiler on a program 

that simply contains multiple nested layers that each cause the execution thread to sleep for a 

predefined number of seconds.  Since each layer sleeps for a predefined number of seconds, the 

team can hand calculate a report that summarizes the execution time at each layer and along each 

execution branch.  The team will compare the hand-calculated report with the report that the 

profiler generates.  If the reports are the same, then the IPSA Profiler does not have any bugs and 

works properly. 

3.4.2 Java-C++ Interaction 
The team will test the Java-C++ interaction by using a predefined list of protein chain 

comparisons and comparison results.  The Java program will send the list of protein chain 

comparisons to the C++ program.  The C++ program will match each protein chain comparison 

with its predefined comparison result and send the comparison results back to the Java program.  

The Java program will output the results to the console.  If the results are the same as the hand-

calculated results then the Java-C++ interaction works correctly. 

3.4.3 The Compute_RMSD_D1 Function 
The team will test the GPU-based Compute_RMSD_D1 function by outputting to the 

console the result of each step described in Section 3.3.4.1.  The team will compare these results 

with the corresponding results from the original Java function.  If all of the results are the same, 

then the GPU-based function calculates the values correctly for a single protein chain 

comparison. 

Since the GPU-based function calculates thousands of comparisons at the same time, the 

team needs to determine if all of the comparisons are calculated correctly.  To do this, the team 
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will write the textures to CPU memory after each step described in Section 3.3.4.1 and then 

output to the console selected results from the matrix of results.  The team will compare these 

results with the corresponding results from the original Java function. 

3.5 Scheduling and Task Assignments 

Table 3.5a: Schedule 
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Table 3.5b: Task Assignments 
   

 Mathew 
Alvino 

Travis 
McBee 

Heather 
Nelson 

Todd 
Sullivan 

 

Problem Statement  
Writing     
Editing     

 
Requirements Analysis  

Writing     
Editing     

 
Design Specification  

Designs     
Writing     
Editing     

 
System Implementation  

2D Arrays versus 1D Arrays     
Cg Mathematical Computation     

Cg Average Random Walk Distance     
IPSA Profiler     

IPSA Java-C++ Interaction     
IPSA Compute_RMSD_D1 Function     

Writing     
Editing     

 
System Performance and Evaluation    

2D Arrays vs. 1D Arrays Data Collection     
Cg Mathematical Computation 

Data Collection     

Cg Average Random Walk Distance 
Data Collection     

IPSA Compute_RMSD_D1 Function 
Data Collection     

Writing     
Editing     

 
Summary and Conclusions  

Writing     
Editing     

 
Future Work  

Writing     
Editing     

 
Advisory Board Presentation  

Presentation Creation     
Presentation Editing     
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4 System Implementation 
The system implementations involve a wide variety of programming languages and 

technologies.  The GPGPU Limitations Demonstration and the Compute_RMSD_D1 function 

use C++ and BrookGPU while Mathematical Computation and Average Random Walk Distance 

use C++ and Cg.  As indicated earlier by the name, Java-C++ Interaction includes a Java 

program and a C++ program. 

4.1 GPGPU Limitations Demonstration 
GPU-based programs have many limitations that the team must take into account when 

implementing the deliverables.  GPUs do not have random access memory, so programmers need 

to avoid lookups.  Branching on the GPU and transferring data from the CPU to the GPU are 

also very costly.  Two dimensional textures are also significantly more efficient than one 

dimensional textures. 

4.1.1 2D Arrays versus 1D Arrays 
The 2D Arrays versus 1D Arrays program demonstrates the superiority of using two 

dimensional arrays in GPU computations.  The program generates a set of random floats in the 

range [0.0, 1.0) and loads the numbers onto a 2D texture and a 1D texture on the GPU.  Next, the 

program multiplies each float by 256 and then takes then floor of the result.  The program 

compares the execution time for each texture with the execution time of performing the same 

operations on the CPU. 

The team implemented the 2D Arrays versus 1D Arrays program using BrookGPU.  The 

2D texture is a two dimensional Brook stream of size 1280 by 1280.  Similarly, the 1D texture is 

a one dimensional Brook stream of size 1280.  The previously described operations execute on 

datasets of 1,000 elements to 1,000,000,000 elements.  Since a single Brook stream cannot hold 
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the required amount of elements, the program repeats the process multiple times until the number 

of elements operated on equals the target dataset size.  One Brook kernel performs the 

multiplication and floor operation on each element. 

4.2 GPGPU Potential using Cg 
In order to facilitate the group’s understanding of GPGPU programming techniques, the 

team implemented two fundamental programs as case studies for GPGPU performance 

evaluation.  Before creating Cg programs, the hardware must include the correct libraries and 

development environment as described in Section 2.1.5.  For this portion, the group used 

Computer 1, which includes an NVIDIA 8800 GTX graphics card and an Intel Pentium 4 2.8 

GHz processor.  The necessary software includes the OpenGL Utility Toolkit (GLUT) and 

OpenGL Extension Wrangler (GLEW) libraries, the Cg Toolkit for shader support, and a C/C++ 

compiler for the actual development. 

4.2.1 Mathematical Computation 
Initially, the group implemented a complex parallel mathematical computation over each 

element in a large array.  This example, derived from the Basic Math Tutorial in [21], served as 

the basis for understanding the GPU pipeline and allowed the team to analyze the performance of 

the GPU in its ideal use.  In order to perform this computation, the group performed several 

initialization steps.  In all, a simple four-line CPU program was translated into 532 lines of code, 

suitable for execution using the GPU.  Each step, as outlined in the following paragraphs, 

enables the use of computational GPU processing. 

Before attempting to utilize the GPU processors, the program must fill a CPU array with 

the data that will later be passed to GPU textures.  Since the CPU array lies in a one-dimensional 
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space, the program will translate the elements into a two dimensional representation.  

Furthermore, several libraries enable the program to pass data onto the GPU. 

First, the GLUT library allows the program to create a context for OpenGL by opening an 

invisible window.  For graphics related GPU programming, this window displays the images and 

textures.  However, GPGPU programming only requires the window in order to provide a 

framework for computation, since no output will be displayed.  In addition, the algorithm 

initializes GLEW in order to load important OpenGL extensions, such as those that handle 

floating-point numbers.  The libraries will enable Cg to create a context for general purpose 

computation. 

Following the library initialization steps, the program creates a framebuffer object that 

will allow the CPU to interpret the GPU result.  For example, the GPU represents data using four 

channels, where each channel represents eight bits.  In graphics programming, these channels 

correspond to the amount of red, green, blue, and alpha transparency in an image.  However, the 

use of this offscreen buffer to render calculations allows the program to bypass the limitations 

caused by eight bit channels.  An offscreen framebuffer object is essential to GPGPU 

programming since it provides better consistency between the CPU and GPU. 

Once the program initializes the environment, the algorithm may create GPU textures for 

the CPU data and initialize the shader.  A function generates each texture with a specific 

identification and transfers the CPU data to the GPU.  Then, the algorithm creates a fragment 

program, or computational kernel.  The kernel behaves as a loop where it acts on each element in 

the texture, independently of the other elements.  Furthermore, the actual kernel, or shader, is 

written in Cg and loaded into the fragment program.  Figure 4.2.1 shows the actual shader source 

used for this computation. 
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float4 saxpy ( 
 in float2 coords : TEXCOORD0, 
 uniform samplerRECT textureY,  
 uniform float alpha )  : COLOR {  
  float4 y = texRECT (textureY, coords);  
  return alpha*y+ (alpha+y)/(alpha*y)*alpha;  
 }  

 
 

Figure 4.2.1: 
Cg Shader Source for Mathematical Computation 

 

 

After each initialization step, the GPU can finally perform the computation on each 

element in the texture.  This algorithm uses a ping-pong technique to compute the result using 

the value of the texture element and stores the result back into the same element.  The algorithm 

renders each pixel, or element, in the texture to a quad.  Finally, the program transfers the 

resulting data back to the CPU so that it may be displayed to the user. 

4.2.2 Average Random Walk Distance 
In order to further study the potential for GPU implementations of CPU programs beyond 

mathematical computations, the team implemented a common problem in protein folding 

algorithms.  The Random Walk Distance algorithm generates the average distance between 

points in a walk using a two dimensional space.  Since this technique is often used in protein 

folding algorithms, it serves as a useful model to examine the potential of GPGPU algorithms to 

serve protein prediction and retrieval research. 

Many of the steps outlined in the preceding section were also followed to initialize the 

Random Walk environment.  As before, the program included and initialized the GLUT and 

GLEW libraries, prepared the offscreen buffer, and initialized four arrays with random points to 

follow during the walk.  After creating the four CPU arrays, the program created textures and 

transferred the CPU data onto the GPU.  Finally, the algorithm used the ping-pong technique to 
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store results and implemented the reduction technique to return a single value, the average 

distance of the walk. 

Although the program follows many similar steps as the complex mathematical 

computation, the group made significant improvements to the algorithm.  For example, the CPU 

algorithm performs a complex computation on each element, sums the results, and returns the 

average.  This type of computation therefore requires the use of multiple Cg shaders in order to 

first run the equation and finally sum all of the results.  Therefore, the Random Walk Distance 

algorithm uses two shaders, which each binds to a fragment program and executes using the 

same textures. 

Since Random Walk Distance uses the ping-pong technique during the initial 

mathematical computation, the program does not need to create an additional texture for use 

during the summation.  First, the function maps the shader described in Figure 4.2.2 to the 

elements in each texture.  Texture y, via the ping-pong technique, switches from a read-only to a 

write-only texture in order to store the returned results.  After mapping the equation to each 

pixel, the algorithm follows the reduction technique in order to sum the entire result.  In general, 

a reduction will not prove faster on a GPU than on a CPU since the result is dependent on each 

element in the texture, thereby eliminating the potential for parallel computation.  However, 

since the group has chosen to represent each element as a float4, including the result, each 

channel of the result is summed independently, as shown in Figure 4.2.2.  This allows any 

reduction algorithm, such as summation, to perform approximately four times faster on a GPU 

than on a CPU.  Once the GPU returns the result, the CPU must take one final step to sum the 

four channels of the result. 
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float4 map(  
in float2 coords: WPOS, 
uniform samplerRECT textureX, 
uniform samplerRECT textureU, 
uniform samplerRECT textureV, 
uniform samplerRECT textureY) : COLOR { 

float4 x = texRECT(textureX, coords); 
float4 y = texRECT(textureY, coords); 
float4 u = texRECT(textureU, coords); 
float4 v = texRECT(textureV, coords); 
return sqrt(pow((x-u),2) + pow((y-v),2)); 

} 
 

float4 summation( 
float2 coords: WPOS, 
uniform samplerRECT textureY) : COLOR {  

float2 topleft = ((coords-0.5)*2.0)+0.5; 
float4 result; 
float4 val1 = texRECT(textureY, topleft); 
result.r = val1.r + val1.g + val1.b + val1.a; 
float4 val2 = texRECT(textureY, topleft+float2(1,0)); 
result.g = val2.r + val2.g + val2.b + val2.a; 
float4 val3 = texRECT(textureY, topleft+float2(1,1)); 
result.b = val3.r + val3.g + val3.b + val3.a; 
float4 val4 = texRECT(textureY, topleft+float2(0,1)); 
result.a = val4.r + val4.g + val4.b + val4.a; 
return result; 

} 
 
 

Figure 4.2.2: 
Cg shaders for Average Random Walk Distance 

 

4.3 IPSA 
Section 2.1.3.2 describes the compiling and organizational problems of the original IPSA 

source code.  In order to compile the program, the team repackaged all of the source code's 

classes into a Java package called IPSA.  The team added a class to the IPSA package called 

Protein_Path. 

Protein_Path contains several static variables that all of the classes within the IPSA 

package can access.  These variables include the path to the protein files, the path to the profile 

directory, and counters for keeping track of execution times of different areas of the code.  The 

team replaced all of the hard-coded, system-specific paths in the original source code with the 

path variables in the Protein_Path class.  The repackaging of the source code and addition of 
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Protein_Path gives the team the ability to quickly port the source code to a new system by simply 

changing the variables within the Protein_Path class. 

4.3.1 IPSA Profiler 
Since the creator of IPSA implemented the algorithm in Java, the team wrote the IPSA 

Profiler in Java.  The layers variable is a standard Java Stack instance.  The two maps, 

totals_with_path and totals_basename, are standard Java TreeMap instances.  The out variable is 

a standard Java PrintStream instance of a FileOutputStream instance. 

The analysis portion of the application parses the log file based on the carriage return 

character and the ": " delimiter.  The entries for each layer implement the Comparable interface.  

The analyzer uses multiple implementations of the Comparator interface to sort the results based 

on layer name, and ascending/descending execution times. 

4.3.2 Java-C++ Interaction 
The Java program uses the Runtime.exec() method to execute an operating system-

specific command that runs the C++ program.  The Runtime.exec() method returns a standard 

Java Process object.  The Process object provides methods for controlling the process.  These 

methods include accessing the process' input and output streams. 

The Java program creates a BufferedReader and BufferedWriter from the process' input 

and output streams.  The BufferedReader instance contains a method for checking if the stream 

has data available and a blocking method for reading a line.  The team uses these two methods to 

perform nonblocking reads from the C++ program.  Similarly, the BufferedWriter contains a 

method for writing characters and strings to the output stream and a method for flushing the 

output stream. 
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The C++ program reads and writes data to the Java program using standard C printf and 

scanf functions or C++'s cout and cin.  Both programs write data as characters.  When reading 

numbers, the C++ program uses atoi(), atof(), and atoll() to convert the strings into numbers.  

The Java program uses comparable conversion functions as well. 

4.3.3 The Compute_RMSD_D1 Function 
The Compute_RMSD_D1 function performs comparisons on thousands of chains at 

once.  The two dimensional arrays of chains are stored on the GPU as two Brook streams with 

length and height of size N, where N is a power of two.  N is currently set to 1,280.  The program 

uses eight N-by-N Brook streams to store the two sets of chains to compare, the three concurrent 

execution lines on the sets of chains, and three extra arrays for intermediate calculations.  The 

program also uses three N/4-by-N/4 Brook streams for storing reduce operations and 

intermediate sets of three-by-three matrices. 

4.3.3.1 CPU Arrays to GPU Arrays 
When writing the arrays to GPU memory and retrieving the results, the corresponding 

CPU arrays must be contiguous blocks of memory.  Thus, to store an N-by-N array of float4s in 

CPU memory, the program allocates a one dimensional array of size N2.  When referencing this 

CPU array, the program uses a simple mapping function that maps to dimensional coordinates to 

the one dimensional index space. 

At the beginning of program execution, the program translates each protein chain into a 

four-by-four array of float4s as described in Section 3.2.4.  After translating a protein chain into 

an array of float4s, the program inserts the protein chain into the appropriate giant one 

dimensional CPU array using the previously mentioned mapping function.  The program writes 
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the final one dimensional CPU arrays to the Brook streams once all of the protein chains are 

placed in the arrays. 

4.3.3.2 Code Translation 
After initialization, the program begins the GPU-based computations.  Once the GPU-

based computations begin, the program does not perform any read/write operations between the 

CPU and GPU memory until the end of the algorithm.  Since the algorithm includes numerous 

kernels and summation operations, this section will only describe the translation process for a 

few cases. 

As described in Section 3.3.4.1, Step 4 of the Compute_RMSD_D1 function calculates 

the three-by-three matrix tR.  Figure 4.3.3.2a depicts Step 4 as the Java code in the original IPSA 

source code.  The for loop performs a summation on a series of multiplication operations.  The 

first step towards a GPU-based algorithm is to convert the for loop into a calculation on float4s 

as shown in Figure 4.3.3.2b's C++ code.  The three-by-three matrix tR translates to a three-by-

one array of float4s as described in Section 3.2.3 while the two chains translate into an array of 

float4s with the array length divided by three. 

 
for( i = 0; i < chain1.length/3; i++ ){ 
    a1 = i * 3; 
    a2 = a1 + 1; 
    a3 = a2 + 1; 
 
    tR[0][0] += chain1[a1] * chain2[a1]; 
    tR[0][1] += chain1[a1] * chain2[a2]; 
    tR[0][2] += chain1[a1] * chain2[a3]; 
 
    tR[1][0] += chain1[a2] * chain2[a1]; 
    tR[1][1] += chain1[a2] * chain2[a2]; 
    tR[1][2] += chain1[a2] * chain2[a3]; 
 
    tR[2][0] += chain1[a3] * chain2[a1]; 
    tR[2][1] += chain1[a3] * chain2[a2]; 
    tR[2][2] += chain1[a3] * chain2[a3]; 
} 
 

for( i = 0; i < sizeof(chain1); i++ ){ 
    tR[0].r += chain1[i].r * chain2[i].r; 
    tR[0].g += chain1[i].r * chain2[i].g; 
    tR[0].b += chain1[i].r * chain2[i].b; 
 
    tR[1].r += chain1[i].g * chain2[i].r; 
    tR[1].g += chain1[i].g * chain2[i].g; 
    tR[1].b += chain1[i].g * chain2[i].b; 
 
    tR[2].r += chain1[i].b * chain2[i].r; 
    tR[2].g += chain1[i].b * chain2[i].g; 
    tR[2].b += chain1[i].b * chain2[i].b; 
} 

 

Figure 4.3.3.2a: 
Original Java Calculation of tR 

 

Figure 4.3.3.2b: 
Translation of tR Calculation to Float4s 
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 Once in float4 format, the programmer can break the for loop into Brook kernels that 

perform a uniform operation across all of the elements of a Brook stream.  As Figure 4.3.3.2b 

shows, the loop consists of three separate sections of calculations.  The first element of the float4 

version of tR is the summation of all of the multiplications of chain1's red value with chain2's 

red, green, and blue values with tR's red, green, and blue values summing the multiplications 

with chain2's corresponding color.  The second element of the float4 version of tR is similar, 

except it uses chain1's green value, while the third element uses chain1's blue value. 

 After analyzing the float4 version of the tR calculation, one sees that this operation is six 

separate operations mapped onto all of the elements of chain1 and chain2.  The tR calculation 

consists of the three separate multiplication operations, and then three summation (reduce) 

operations that sum the results from the three multiplication operations.  Figure 4.3.3.2c shows 

these steps in C++ code. 

Multiplication Operations 
 
for( i = 0; i < sizeof(chain1); i++ ){ 
  temp1[i].r = chain1[i].r * chain2[i].r; 
  temp1[i].g = chain1[i].r * chain2[i].g; 
  temp1[i].b = chain1[i].r * chain2[i].b; 
} 
 
for( i = 0; i < sizeof(chain1); i++ ){ 
  temp2[i].r = chain1[i].g * chain2[i].r; 
  temp2[i].r = chain1[i].g * chain2[i].g; 
  temp2[i].r = chain1[i].g * chain2[i].b; 
} 
 
for( i = 0; i < sizeof(chain1); i++ ){ 
  temp3[i].r = chain1[i].b * chain2[i].r; 
  temp3[i].r = chain1[i].b * chain2[i].g; 
  temp3[i].r = chain1[i].b * chain2[i].b; 
} 
 

Summation Operations 
 

for( i = 0; i < sizeof(chain1); i++ ){ 
  tR[0].r += temp1[i].r; 
  tR[0].g += temp1[i].g; 
  tR[0].b += temp1[i].b; 
} 
 
for( i = 0; i < sizeof(chain1); i++ ){ 
  tR[1].r += temp2[i].r; 
  tR[1].g += temp2[i].g; 
  tR[1].b += temp2[i].b; 
} 
 
for( i = 0; i < sizeof(chain1); i++ ){ 
  tR[2].r += temp3[i].r; 
  tR[2].g += temp3[i].g; 
  tR[2].b += temp3[i].b; 
} 

 
 

Figure 4.3.3.2c: 
tR's Three Multiplication and Three Summation Operations 

 

An important observation is that each operation, which is shown as a for loop, operates 

on a single element of each array and the elements of all arrays in an operation have the same 
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index.  Due to these facts, the operations are parallelizable and thus suitable for GPU-based 

computation.  Figure 4.3.3.2d demonstrates the three multiplication operations and the 

summation operation as three Brook kernels and one Brook reduction. 

 
kernel void tR1( float4 a<>, float4 b<>, out float4 c<> ){ 
    c.x = a.x * b.x; 
    c.y = a.x * b.y; 
    c.z = a.x * b.z; 
    c.w = 0.0; 
} 
 
kernel void tR2( float4 a<>, float4 b<>, out float4 c<> ){ 
    c.x = a.y * b.x; 
    c.y = a.y * b.y; 
    c.z = a.y * b.z; 
    c.w = 0.0; 
} 
 
kernel void tR3( float4 a<>, float4 b<>, out float4 c<> ){ 
    c.x = a.z * b.x; 
    c.y = a.z * b.y; 
    c.z = a.z * b.z; 
    c.w = 0.0; 
} 
 
reduce void sum( float4 a<>, reduce float4 result<> ){ 
    result += a; 
} 

 
 

Figure 4.3.3.2d: 
Brook Kernels and Brook Reduction 

 

 The kernels and reduction are similar to normal C++ functions.  Each variable a, b, c, and 

result represent a single pixel of their respective textures.  The sum function performs a reduce 

operation that is dependent on the size of the input and output textures.  For example, if the first 

texture is a four-by-four matrix and the result is a two-by-two matrix then the sum function 

reduces each two-by-two matrix in the first texture into a single element in the result texture. 

 In practice, the tR calculation requires eight textures.  chain1, chain2, extrac1, extrac2, 

and extrac3 are N-by-N Brook streams while r1_x, r2_x, and r3_x are N/4-by-N/4 Brook 

streams.  chain1 and chain2 contain thousands of chains as described in Section 3.2.4.  Figure 

4.3.3.2e describes the consecutive texture operations for calculating tR. 

56 



 

 
tR1( chain1, chain2, extrac1 ); 
tR2( chain1, chain2, extrac2 ); 
tR3( chain1, chain2, extrac3 ); 
sum( extrac1, r1_x ); 
sum( extrac2, r2_x ); 
sum( extrac3, r3_x ); 

 
 

Figure 4.3.3.2e: 
The tR Calculation's Kernel Calls 

 

 The three kernels tR1, tR2, and tR3 write the appropriate multiplication results to all of 

the pixels of extrac1, extrac2, and extrac3.  After the multiplication operations, the three 

summation operations on the three extra textures produce the tR matrix.  Since the extra textures 

are N-by-N and r1_x, r2_x and r3_x are N/4-by-N/4, the summation operation effectively sums 

each four-by-four matrix within the extra textures and places them into a single element of the 

result textures.  Thus after completing all of the summation operations, r1_x contains the first 

element of each chain comparison's tR float4 array while r2_x contains the second element and 

r3_x contains the third element. 
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5 System Performance and Evaluation 
The team used a millisecond timer for all performance evaluations.  Windows, and most 

other modern computer systems, do not offer timers that are better than one millisecond.  Even 

though the team used a millisecond timer, all computations need to take at least several seconds 

in order to accurately estimate the relative performance. 

The team compared the relative performance of each program by timing the GPU-based 

computation and timing the same computation performing on the CPU.  In all cases the 

computations were repeated hundreds or thousands of times in order to make the computations 

last for several seconds to several minutes.  In the case of large dataset sizes that do not fit into a 

single texture, the team continually wrote values to and read results from the GPU memory to 

attain timings for the large datasets. 

5.1 GPGPU Limitation Demonstrations 

5.1.1 2D Arrays versus 1D Arrays 
The 2D Arrays versus 1D Arrays program clearly shows that 2D textures are vastly 

superior to 1D textures.  Figure 5.1.1 shows the results from running the map operations 

described in Section 4.1.1 on 2D textures and 1D textures.  The left graph shows the 2D texture's 

performance relative to the CPU's performance while the right graph shows the 1D texture's 

performance relative to the CPU.  Both horizontal axes are logarithmic.  An important note is 

that the left graph's vertical axis is logarithmic while the right graph's is linear.  Thus, at 

10,000,000 elements, the 2D texture implementation was 10,000 times faster than the CPU while 

the 1D texture implementation speed was about equal to the CPU speed. 
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Figure 5.1.1: 2D Arrays versus 1D Arrays Results 

5.2 GPGPU Potential using Cg 
For the experienced GPGPU developer, Cg provides an excellent low-level interface to 

the underlying hardware.  Therefore, much more optimization is possible using Cg than with 

BrookGPU.  Despite the programmer's increased control when using Cg, the language still 

suffers from many of the same limitations as BrookGPU.  Indeed, highly mathematical 

computations that run in parallel over large datasets prove much faster on the GPU.  However, 

common CPU operations, such as the summation, limit the realized performance gain.  The 

choice of language will require future developers to consider the need to quickly implement large 

sections of code with BrookGPU versus the desire to optimize algorithms for an even greater 

speedup using Cg. 

 The team compared each Cg algorithm to a CPU counterpart.  This comparison ensured 

the accuracy of the Cg algorithms and provided the basis for performance evaluation.  Each 

algorithm features a significant speedup over the comparable CPU version due to the use of 

fundamental GPGPU programming techniques. 
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5.2.1 Mathematical Computation 
The highly mathematical and parallel nature of the Mathematical Computation algorithm 

demonstrates the keen ability of the GPU to evaluate numbers over large datasets.  As shown in 

Figure 5.2.1, small arrays have little or no gain over the CPU since the cost of data transfer 

remains very high.  However, the algorithm grows faster with the size of the data.  At the largest 

texture size, 4096-by-4096 pixels, the GPU performs nearly 175 times faster than the CPU. 

 Although the GPU only features 128 parallel processors, this speedup is still extremely 

plausible.  Since the algorithm computes the function for over sixteen million items, the cost of 

data transfer is low in comparison to the cost of CPU computation.  Furthermore, the GPU has 

been optimized for graphics processing and can process multiple floats in a single clock cycle.  

As such, an increase greater than 128 times should be expected given the intended purpose of the 

GPU to efficiently process numerical data. 
 

 
 

Figure 5.2.1: High Computation: Problem Size vs. CPU to GPU Time Ratio 
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5.2.2 Average Random Walk Distance 
Average Random Walk Distance benefited greatly from the use of GPGPU techniques in 

Cg.  As with Mathematical Computation, Random Walk Distance features an extensive 

mathematical function that will be evaluated over each element.  Furthermore, protein folding 

algorithms that feature random walks will likely require the evaluation of very large datasets to 

cope with the growing database of proteins in the Protein Data Bank [5].  At the heart of this 

algorithm’s increase in speed is its use of parallel computation over a very large texture. 

 As shown in Figure 5.2.2, Random Walk Distance achieves a significant speedup on the 

GPU while not as great as the speedup realized by Mathematical Computation.  The GPU 

evaluates the equation that Random Walk Distance implements much faster than the CPU.  

However, the need to reduce the texture into a single value in order perform a summation hinders 

the ability of the GPU version to outperform the CPU.  Therefore, Random Walk Distance 

performs a respectable 40 times faster than the CPU algorithm using the largest texture size. 

 
 

Figure 5.2.2: Random Walk Distance: Problem Size vs. CPU to GPU Time Ratio 
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5.3 IPSA 
The results of the IPSA programs show that the team successfully improved the 

performance of IPSA, and that further performance gains are unlikely given IPSA's current 

design.  The IPSA Profiler results show that the team translated the majority of GPU-compatible 

code when implementing the Compute_RMSD_D1 function.  The Compute_RMSD_D1 function 

results shows that GPU processing can significantly increase performance. 

5.3.1 IPSA Profiler 
The team used the IPSA Profiler's results to determine which portions of IPSA to transfer 

to the GPU.  Figure 5.3.1a shows the highest-level results from the IPSA Profiler.  IPSA spends 

eighty-eight percent of its processing time in a section called Extend.  IPSA spends the 

remaining twelve percent in a function called Align Items. 

 

 
 

Figure 5.3.1a: IPSA Profile Layer 1 

Figure 5.3.1b breaks the two top layers down into subsections.  Align Items breaks down 

into two seconds, Compute D1 and Align Items Branching.  Compute D1 consumes 7% of 

IPSA's total processing time while Align Items Branching consumes 5% of the total processing 

time.  The Extend section consists of Extend Branching, Compute D2, and Matrix Multiply.  
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Extend Branching consumes 85.7% of IPSA's total processing time while Compute D2 and 

Matrix Multiply consume 2% and 0.3% respectively. 

 

 
 

Figure 5.3.1b: IPSA Profile Layer 2 

As the section names suggest, Align Items Branching and Extend Branching both contain 

significant amounts of branching and control structures.  As described in Section 4.1, these 

branching and control structures are very costly to perform on a GPU.  Thus, Align Items 

Branching and Extend Branching, which collectively account for 90.7% of IPSA's total 

processing time, are not suitable for GPU-based processing in their current form.  These sections 

average three to five instructions per if statement and contain multiple sections of up to three 

nested for loops. 

The sections in Figure 5.3.1b that are labeled in green colors are the only sections of 

IPSA that are applicable for GPU-based processing in their current form.  These sections 
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collectively account for only 9.3% of the algorithm's total processing time.  Thus, if the team 

were able to completely eliminate this processing time, the algorithm would only be 1.1 times 

faster than the CPU-based IPSA.  Logically, the team chose to translate Compute D1, which is 

shorthand for the Compute_RMSD_D1 function, to the GPU. 

5.3.2 The Compute_RMSD_D1 Function 
As described in Section 3.3.4.2, the Compute_RMSD_D1 function includes calculating 

eigenvalues and eigenvectors.  Due to project constraints, the team hard-coded the eigenvalues 

and eigenvectors into the prototype.  The team eliminated the eigenvalue and eigenvector 

processing time from the CPU-based timing result by timing the calculation of thousands of 

eigenvalues and eigenvectors and dividing by the number of sets of eigenvalues computed.  After 

determining the average time for computing one comparison's eigenvalues and eigenvectors, the 

team multiplied the average time by the number of comparisons in the actual test and subtracted 

the result from the CPU-based processing time. 

The team performed the Compute_RMSD_D1 function tests on Computer 2.  Due to 

limitations of Computer 2's video card, the largest texture that the computation could use was 

1280-by-1280.  The GPU-based Compute_RMSD_D1 function can compute 102,400 chain 

comparisons simultaneously.  The GPU-based function is 9.828 times faster than the CPU-based 

function.  Not including any potential overhead from connecting the GPU-based function with 

IPSA as detailed in Section 3.3.2, the GPU-based IPSA algorithm is 1.076 times faster than 

IPSA and cuts 84 seconds off the total processing time. 
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6 Summary and Conclusions 
The team successfully completed the goals and objectives in Section 1.3.  The Cg 

programs described in Section 4.2 and Section 5.2 fulfill the requirements of the project's first 

phase.  The map program described in Section 4.1 and Section 5.1, and the Map-Reduce program 

included in the report's documentation meet the requirements of the second phase.  The team 

completed the third phase by developing and using the profiling program described in sections 

3.3.1, 3.4.1, 4.3.1, and 5.3.1.  The team completed the final phase by developing the GPU-based 

Compute_RMSD_D1 function prototype described in sections 3.3.4, 3.4.3, 4.3.3, and 5.3.2 and 

by developing the IPSA-GPU interaction prototype described in sections 3.3.2, 3.4.2, and 4.3.2. 

The team successfully overcame the project's many constraints, including the team 

members' complete lack of experience with GPU programming, the significant human factor 

constraints described in Section 2.1.3.2, and the sheer difficulty of the problem.  The team has 

proven that GPU-based computation can significantly improve the average response time of 

algorithms that are parallelizable.  The team's GPU-based Compute_RMSD_D1 function could 

potentially eliminate 84 seconds of IPSA's total processing time.  The team has also shown that 

further GPU-based improvements of IPSA will require a redesign of the algorithm that reduces 

branching and extended nested looping. 
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7 Future Work 
The GPU performance gain is limited by the small percentage of total processing time for 

IPSA's parallelizable code sections (Section 5.3.1), the use of only three of the four floats in each 

pixel on the GPU (Section 3.2.2), and the unused float4's from the texture packing strategy 

(Section 3.2.4).  In order to overcome the two limitations pertaining to float4 conversion, the 

GPU-based algorithm would need to be completely redesigned.  This redesign would most likely 

provide a performance gain that is not worth the amount of time required to complete the 

redesign.  The performance gain would also be insignificant because the Compute_RMSD_D1 

function is only 7% of IPSA's total processing time. 

Future development can only achieve worthwhile performance gains through redesigning 

the IPSA algorithm in a way that increases the number of parallelizable sections.  IPSA's current 

design includes an abundance of branching and extensive nested looping.  Improvements would 

also be easier to develop if the original IPSA algorithm was thoroughly documented, and if the 

algorithm and all of its supporting data structures were rewritten in C++. 

Aside from potential performance gains, integrating the GPU-based program into the 

IPSA algorithm requires that the calculation of eigenvalues and eigenvectors be ported to the 

GPU.  This process, which is long and tedious, could be a semester or yearlong project in itself.  

Additionally, the team did not study whether the GPU's single precision floating point numbers 

will affect the accuracy of IPSA, which currently uses double precision floating point numbers.  

Eventually, video cards will support double precision floating point numbers.  In the meantime, 

IPSA must accept the single precision limitation in order to reduce the average response time. 
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