

General-Purpose Computing on Graphics Processing Units:
GPU Processing of Protein Structure Comparisons

Todd Sullivan, Heather Nelson, Travis McBee, Mathew Alvino

Mentor: Dr. Chi-Ren Shyu

CS 4970 – Senior Capstone Design I
Technical Report

Winter 2007

Table of Contents

Executive Summary 1
1 Problem Definition 2

1.1 Introduction... 2
1.1.1 Needs Analysis... 2
1.1.2 Market Analysis .. 2

1.2 Technical Background.. 3
1.2.1 Index-based Protein Substructure Alignments .. 3
1.2.2 General GPGPU Techniques ... 4
1.2.3 Current GPGPU Technologies .. 6

1.2.3.1 Accelerator Performance ... 7
1.2.3.2 BrookGPU Performance .. 8
1.2.3.3 Cg.. 10

1.2.4 GPGPU Performance Techniques... 10
1.2.4.1 Cache-Efficient Memory Models... 11
1.2.4.2 Vertex Processor Code Motion Technique ... 11
1.2.4.3 GPU Clustering ... 13

1.3 Goals and Objectives .. 14
1.4 Overall Approach.. 15

1.4.1 System Diagram .. 17
1.4.2 Advantages and Disadvantages ... 19
1.4.3 Costs ... 19

2 Requirements Analysis 20
2.1 System Requirements and Constraints... 20

2.1.1 Operating Environment ... 20
2.1.2 Market Users and Characteristics... 21
2.1.3 Environmental Constraints.. 22

2.1.3.1 Quality and Reliability ... 22
2.1.3.2 Human Factors.. 22

2.1.4 System Components.. 24
2.1.5 Software Interfaces and Libraries... 24
2.1.6 Communication Interfaces... 25
2.1.7 Hardware Interfaces... 25

2

2.1.8 System Maintenance ... 26
2.2 Performance Requirements ... 26
2.3 Resource Requirements.. 27

2.3.1 Time.. 27
2.3.2 Resources ... 28
2.3.3 Facilities ... 28
2.3.4 Budget .. 28

2.4 Evaluation Metrics.. 28
3 Design Specification 29

3.1 Hardware ... 29
3.2 Data Requirements ... 29

3.2.1 IPSA Data Sources.. 29
3.2.2 Translation to a GPU Datatype ... 30
3.2.3 Matrix Translations .. 30
3.2.4 Protein Chain Translations.. 32

3.3 Software ... 33
3.3.1 IPSA Profiler ... 33

3.3.1.1 Class Diagram ... 34
3.3.1.2 Data Flow Diagram... 35

3.3.2 Java-C++ Interaction.. 36
3.3.2.1 High-Level Process Diagram ... 38

3.3.3 Alternative Java-C++ Interaction ... 39
3.3.3.1 Alternative High-Level Process Diagram ... 39
3.3.3.2 Advantages and Disadvantages ... 40

3.3.4 The Compute_RMSD_D1 Function .. 40
3.3.4.1 Algorithm... 41
3.3.4.2 Eigenvalues and Eigenvectors.. 42

3.4 Testing Methods .. 42
3.4.1 IPSA Profiler ... 43
3.4.2 Java-C++ Interaction.. 43
3.4.3 The Compute_RMSD_D1 Function .. 43

3.5 Scheduling and Task Assignments .. 44

3

4 System Implementation 46
4.1 GPGPU Limitations Demonstration ... 46

4.1.1 2D Arrays versus 1D Arrays.. 46
4.2 GPGPU Potential using Cg .. 47

4.2.1 Mathematical Computation ... 47
4.2.2 Average Random Walk Distance... 49

4.3 IPSA ... 51
4.3.1 IPSA Profiler ... 52
4.3.2 Java-C++ Interaction.. 52
4.3.3 The Compute_RMSD_D1 Function .. 53

4.3.3.1 CPU Arrays to GPU Arrays... 53
4.3.3.2 Code Translation... 54

5 System Performance and Evaluation 58
5.1 GPGPU Limitation Demonstrations ... 58

5.1.1 2D Arrays versus 1D Arrays.. 58
5.2 GPGPU Potential using Cg .. 59

5.2.1 Mathematical Computation ... 60
5.2.2 Average Random Walk Distance... 61

5.3 IPSA ... 62
5.3.1 IPSA Profiler ... 62
5.3.2 The Compute_RMSD_D1 Function .. 64

6 Summary and Conclusions 65
7 Future Work 66
8 References 67

4

Executive Summary

The project's purpose is to learn about General Purpose Computing on Graphical

Processing Units (GPGPU), determine the feasibility of porting an algorithm designed by a

University of Missouri-Columbia PhD student, and develop prototypes that compute a portion of

IPSA on the GPU and demonstrate using GPU-based computations within IPSA. The algorithm,

known as Index-based Protein Substructure Alignment (IPSA), has an average response time of

twenty minutes. Dr. Shyu hopes that the team's research into GPGPU technologies will show

that GPU-based versions of his biology algorithms can perform faster than the current CPU

versions and, in particular, that the GPU-based portion of IPSA is faster than its CPU

counterpart.

The team's study of GPGPU technologies and analysis of IPSA reveals that only 9.3% of

IPSA's total processing time is parallelizable. The remaining 90.7% of the total processing time

is consumed by sections with an abundance of branching and extensive nested looping, both of

which are extremely slow on the GPU. Of the GPU-compatible 9.3%, the team created a GPU-

based prototype of the Compute_RMSD_D1 function, which consumes 7% of the total

processing time.

The GPU-based prototype calculates 102,400 chain comparisons simultaneously. The

prototype is 9.828 times faster than the CPU-based computation. Without including any

potential overhead from connecting the GPU-based computation with IPSA, the GPU-based

IPSA algorithm is 1.076 times faster than IPSA and cuts 84 seconds off the total processing time.

Any additional performance improvements require a redesign of IPSA that increases the amount

of parallelizable code.

1

1 Problem Definition

1.1 Introduction
General-purpose computing on graphical processing units (GPGPU) is an emerging

method for achieving high performance gains on various computing problems such as database

operations, neural networks, and physics-based simulations. The higher number of cores and the

more efficient processing of complex mathematical calculations on GPUs in comparison with

CPUs makes GPGPU a fascinating new method for deploying algorithms. In an effort to reduce

the runtime of protein-based search and retrieval algorithms, Dr. Chi-Ren Shyu of the University

of Missouri-Columbia Medical Biological Digital Library Research Lab (MBDLRL) has asked

the team to convert MBDLRL algorithms into comparable algorithms for processing on a GPU.

1.1.1 Needs Analysis
In particular, the team will study the potential for GPU-based MBDLRL algorithms and

develop a prototype that implements a portion of PhD student Pin-Hao Chi's Index-based Protein

Substructure Alignment algorithm (IPSA) [1] on the GPU. IPSA is part of the MBDLRL's

Protein Database Search Engine project (ProteinDBS) [2]. The algorithm currently takes twenty

minutes on average to complete one query. Dr. Shyu hopes that the team's research into GPGPU

technologies will show that GPU-based MBDLRL algorithms can perform faster than the current

CPU versions.

1.1.2 Market Analysis
The development of GPU versions of MBDLRL algorithms will benefit the study of

proteins and various medical biology fields. Reducing processing time will allow ProteinDBS to

service more queries. Protein retrievals, folding, and other algorithms will be more efficient and

thus have a higher availability.

2

The experience the team will acquire and the framework that the team will develop is

also applicable to many other research areas. Since GPGPU methods are still very new, the

framework and documentation will provide a base for GPGPU applications in all

computationally intensive research. Thus, the benefits of understanding GPGPU methods and

developing a solid framework for converting algorithms to run on the GPU will have benefits

beyond the protein retrieval algorithm that the team will study. In fact, InformationWeek chose

the field of GPGPU as one of the five disruptive technologies to watch in 2007 [3].

1.2 Technical Background
The technical background includes Index-based Protein Substructure Alignments [1],

general GPGPU techniques [4], current GPGPU technologies, and GPGPU performance

techniques.

1.2.1 Index-based Protein Substructure Alignments
Through the use of computer algorithms, biologists have the ability to solve many

computationally challenging problems. For example, one area of interest in molecular biology

surrounds protein structure matching. Proteins, the essential building blocks of organisms, fold

into complicated three-dimensional structures. Each structure has a unique shape that often

determines its biological function. IPSA presents a fast structure retrieval system to find similar

proteins in a database of over 40,000 elements [5]. With such a large dataset, speed often

becomes an issue since biologists need to have access to a system that provides results in real

time. As such, IPSA achieves much higher efficiency than its well-recognized competitors,

DALI and CE. IPSA is 37.66 times faster than DALI and 2.78 times faster than CE.

 Although IPSA performs structure retrieval much faster than many other available

systems, the algorithm could benefit from additional increases in speed. By looking at overall

3

structure and important substructure elements, such as the commonly occurring alpha helix and

beta sheet, the system can achieve higher accuracy than its predecessor, ProteinDBS. However,

an average response time of twenty minutes places a burden on the system and proves an

inconvenience to researchers. The project team will examine the data structures and algorithms

used to determine how they may be processed using a GPU in order to increase efficiency.

 IPSA features many large data structures that facilitate fast protein structure retrieval.

Each protein is considered as a sequence of terms. The algorithm maps substructure

representatives into an M-tree. Then, an inverted-protein index organizes the terms associated

with a protein by considering topology constraints. Using this database, the system can easily

map query proteins to other similar structures. The team could potentially achieve an increase in

speed simply by moving IPSA's large data structures such as the M-tree and inverted-protein

onto the GPU. The team outlines areas with GPU-based computation potential in Section 5.3.1.

1.2.2 General GPGPU Techniques
Modern day GPUs specialize in performing large floating-point matrix arithmetic in

small amounts of time. Much of the power of the GPU has evolved due to the switch from

hardwired pipelines to programmable components. For example, the NVIDIA GeForce FX

replaced register combiners with programmable pixel shaders. GPUs also specialize in parallel

processing, and it is because of this specialization that they are so effective in GPGPU. For

example, modern GPUs can compute 330 billion floating-point operations per second. However

GPGPU is not the best choice for many algorithms in their original form. Many of these

algorithms have to be reworked or have a translator made to function on a GPU. [6]

GPGPU techniques must follow the stream programming model to make use of the

parallelism within GPUs. GPGPU applications implement several basic operations of the stream

4

programming model. These operations are map, reduce, scatter and gather, scan, stream

filtering, sort, and search.

 Map and reduce are two simple operations. Map is essentially applying a function to a

given set of data elements. For example, if one has a stream of data in the range [0.0, 1.0), then a

map operation can convert the values into the range [0, 255] by multiplying each element by 256

and then taking the floor of the result.

Reduce computes a smaller stream from a larger stream. An example application of

reduce is when calculating the largest element from a dataset. A fragment program reads two

values and writes the largest one to the pass' result buffer. The process continues in parallel until

the stream contains only one element, which is the dataset's maximum.

 Scatter and gather are read and write operations that access memory indirectly. Scatter is

the operation for assigning a value to an element of an array. Gather is the process of retrieving

an array element's value. Gather is implemented on a GPU by fetching a pixel from a texture

using specific texture coordinates. Due to the design of GPU hardware, a fragment program

cannot implement scatter. Instead, developers use several tricks to implement scatter such as

rewriting the problem in terms of gather or using the vertex processor for scatter operations.

 The scan and stream filtering operations are also helpful tools. Given an operator + and

an array of n elements [a0, a1,…, an-1], scan returns the array [a0, (a0 + a1), …, (a0 + a1 +…+ an-1)].

The stream filtering operation selects a subset of the overall dataset and only processes on the

subset. This technique is useful for simple data partitioning and collision detection.

 Sorting operations are difficult to implement on fragment processors in current GPUs

since GPU hardware does not implement scatter and data-dependent operations are difficult to

implement in parallel processors. Thus, all GPU-based sorting is impartial to the input data.

5

Many sorting operations are significantly faster on the GPU than on the CPU. For example,

PBSN, a cache-efficient GPU-based sorting network algorithm, is almost six times faster than

the CPU-based Qsort available in the Intel compiler.

 Searching operations on the GPU are not able to beat CPU algorithms in terms of

reducing the processing time of a single search. Instead, the parallelism of the GPU allows

developers to increase throughput by processing multiple searches at the same time. Most basic

searching algorithms such as binary search are possible on the GPU, but algorithms that are more

complex require specialized GPU data structures.

1.2.3 Current GPGPU Technologies
The base technologies for converting algorithms to run on the GPU are the OpenGL

Shading Language (GLSL) [7], DirectX [8], and Cg [9]. RapidMind [10] and PeakStream [11]

both offer commercial products for deploying high-performance applications on a variety of

processors including CPUs, GPUs, and the Cell, while NVIDIA is developing a technology

called CUDA [12] that is specifically for GPGPU. Other languages and extensions that are

available include Sh [13], Shallows [14], Accelerator [15], and BrookGPU [16].

GLSL, DirectX, and Cg are all APIs and toolkits for writing graphics programs. These

APIs are the base for programming on popular video cards made by ATI and NVIDIA. GLSL is

an open standard while DirectX is a proprietary Microsoft product and Cg is a proprietary

NVIDIA product. Even though Cg is proprietary, its compiler supports OpenGL's standards and

thus can create programs that run on both ATI and NVIDIA video cards. The basis for using

GLSL, DirectX, or Cg for GPGPU is that one can hijack the graphics processing pipeline and

force the GPU to perform other tasks instead of rendering graphics. All other languages,

6

extensions, and commercial products convert code into GLSL or DirectX methods during the

compilation process.

RapidMind and PeakStream both offer commercial products for taking advantage of

various types of processors. RapidMind is comprised of the former developers of Sh. Both

companies provide APIs for C++. Unfortunately, the products are too costly for the project. For

example, PeakStream's API costs $1,000 per GPU on an academic server and $295 per user on

an academic workstation.

NVIDIA's CUDA technology is a new technology that enables standard C programming

on a GPU. The technology supports both Linux and Windows XP operating systems and

includes native multi-GPU support. While CUDA appears to be the most promising technology

for future GPGPU applications, the technology is currently in closed testing and is not available

for this project.

Sh and Shallows are C++ libraries that in simplest terms provide a high-level API above

GLSL that allows developers to spend less time with the GLSL-specific programming details.

Accelerator and BrookGPU are both toolkits for taking advantage of GPU processing power

without requiring developers to learn GPU specific APIs or programming languages. The team

is interested in the applicability of Accelerator and BrookGPU to the project because both

technologies significantly reduce the time required to create GPU programs.

1.2.3.1 Accelerator Performance
Accelerator is a library for C# that provides a high level API for performing data

parallelism operations. [15] includes a performance evaluation between C# using Accelerator,

handwritten Pixel Shader 3.0 assembly code, and CPU-based C++ code. The evaluation

benchmarks ten operations: sum, matrix-vector multiplication, matrix-matrix multiplication, life,

7

demosaic, convolve, rotate, corner detection, motion estimation, and stereo matching. Overall,

the Accelerator code performs within 50% of the speeds of the handwritten Pixel Shader code.

The Accelerator code performs better than the CPU-based C++ code on seven out of the ten

operations, but when the Accelerator code performs worse, it performs significantly worse.

 Accelerator's slow processing is from many design decisions. Accelerator uses just-in-

time compilation for its fragment processor programs. This means that the library compiles each

fragment processor program at runtime, when the fragment program is needed. Even though the

library caches these programs for later use, the just-in-time compilation overhead and the

library's other execution costs take up 9% of the running time on average.

 Accelerator's worst performance was in the rotate and motion estimation operations.

These operations involve many gather operations with special out-of-bounds access cases.

While GPUs have hardware support for gather, the DirectX C# API does not provide access to

the hardware support. Thus, Accelerator cannot utilize the GPU's resources while handwritten

Pixel Shader code has access to this hardware support.

 While Accelerator is typically faster than the CPU-based C++ code, it is not as fast as

handwritten Pixel Shader 3.0 code. Additionally, Accelerator in only available for C#, and thus

requires a Windows machine running DirectX and the .Net Framework. For these reasons, the

team will not use Accelerator for the project.

1.2.3.2 BrookGPU Performance
BrookGPU extends C to include stream processing constructs that use the GPU to

perform calculations. BrookGPU includes a compiler and a runtime environment that allows

Brook programs to run on both ATI and NVIDIA GPUs with either OpenGL or DirectX. Brook

virtualizes two important stream computing aspects. OpenGL, DirectX, and Cg limit the number

8

of outputs from a fragment program and limit stream dimensions and size. BrookGPU virtualizes

these aspects and, for example, allows users to create streams that are not bound by texture

memory restrictions within the GPU.

 BrookGPU provides a high-level abstraction of the graphics pipeline through offering

streams and kernels. Streams are analogous to textures within GPU memory, but they do not

have limits on their size. Kernels are analogous to fragment programs that execute on fragment

processors within the GPU. The main difference between kernels and fragment programs is that

BrookGPU kernels allow for an arbitrary amount of output streams while fragment programs

have a limit on the number of outputs and the size of textures used.

 [16] includes a performance evaluation of BrookGPU. On average, BrookGPU's DirectX

output is within 80% of hand-coded GPU implementation performance. BrookGPU's OpenGL

output is significantly less efficient. Most of these inefficiency issues are due to the hand-coded

GPU implementations using problem-specific knowledge to find "shortcuts." These

optimizations are not possible when using BrookGPU.

 BrookGPU is significantly faster than Accelerator. When using the DirectX runtime,

BrookGPU is only marginally slower than hand-coded GPU implementations. Addtionally,

BrookGPU's abstraction will allow the team to port a larger portion of the IPSA algorithm to the

GPU within the limited timeframe for the project. Due to BrookGPU's significant decrease in

programming time in comparison with using the base technologies of OpenGL, DirectX, or Cg,

the team will use BrookGPU for porting applicable portions of IPSA to the GPU.

9

1.2.3.3 Cg
In order to reach the goals outlined in Section 1.3, the project group must choose a

language that demonstrates the raw power of the GPU for high computation and computational

biology problems in a short period of time. As such, Cg presents a programming language using

C-like syntax and philosophy [9]. Each member of the group has worked extensively with the C

language and will feel comfortable learning a similar language. In fact, one of the main reasons

that the designers of Cg chose to implement an environment similar to C was to provide ease of

programming to developers since they would feel familiar with the language.

 Other goals met by the designers of Cg fit well with the project’s purpose to perform

computation on a GPU, contrary to the hardware’s intended purpose. Since Cg implements a C-

like interface, it is hardware-oriented while being general purpose [9]. The designers provided

full support for hardware programming, similar to an assembler language, so that the developers

could have more power. Therefore, the project group will have complete control over the

underlying elements and will be able to demonstrate the best performance that GPGPU

techniques can achieve for selected computationally intensive problems.

1.2.4 GPGPU Performance Techniques
GPGPU developers can use several techniques for improving program performance.

Most of these techniques require direct programming with OpenGL, DirectX, or Cg. Three

examples of GPGPU performance techniques are cache-efficient memory models, the vertex

processor code motion technique, and GPU clustering.

10

1.2.4.1 Cache-Efficient Memory Models
Through the use of an intuitive and flexible language, successful GPU computation

requires the effective representation of data in memory. Many applications beyond graphics can

benefit from parallel GPU processing, including database indexes. These types of programs

benefit since they can be expressed independently, and the GPU is able to process the same

function on multiple elements of a two dimensional array. As shown by the model in [17],

efficient algorithms achieve a two to five times improvement versus a CPU. Therefore, if

researchers ignore the design of the hardware, they will not achieve much increase in speed since

the GPU is intended for maximum efficiency through independent, simultaneous computation.

 In order to maintain high throughput, one must develop a system that reduces that

number of cache misses. Looking up elements that do not currently reside in the cache creates a

high overhead. Therefore, [17] presents a technique that decomposes the input into smaller

blocks, called quads. The GPU processes these separately so that a smaller dataset resides in

memory. Then, a rendering pass performed at each stage reduces the dataset to its final return

value. The project group will use the decomposition technique to reduce IPSA's protein chains

into smaller pieces that the GPU can most efficiently process. By following an effective memory

model, the project group expects to achieve a two to five times speedup on the GPU-based

portions of IPSA in relation to their original CPU-based counterparts.

1.2.4.2 Vertex Processor Code Motion Technique
[18] includes the vertex processor code motion technique for improving the efficiency of

GPGPU programs. The technique focuses on the fact that GPUs include both vertex processors

(VPs) and fragment processors (FPs), but GPGPU programs typically only use fragment

processors. By offloading appropriate instructions to the VPs, [18] was able to reduce execution

11

time of a Gaussian filter program by 40% and reduce the FP workload in ten of eighteen GPGPU

programs tested.

 Data in the GPU pipeline flows from VPs to rasterization and interpolation to FPs. The

key to moving instructions from FPs to VPs is to identify movable instructions. [18] defined

movable instructions as instructions that are executable, accessible, equivalent, and independent.

An instruction is executable if the VP instruction set includes it. For example, the txld

instruction is not executable because it is not within the VP instruction set since VPs cannot read

textures. Additionally, instructions are accessible if the VP registers can replace the registers

used on the FPs. For example, registers on a VP cannot replace sampler registers on FPs because

samplers involve textures and VPs cannot operate on textures.

 An instruction is equivalent if the instruction is linear and does not use lower precision

registers on the VP for high-precision data. Since FPs receive linearly interpolated data from

VPs, one can only move linear operations to VPs. If an operation is not linear, then the

rasterization and interpolation process between VPs and FPs in the GPU pipeline with mangle

the data. Additionally, one cannot use lower precision registers within VPs to pass high-

precision data to FPs because this will result in rounding errors.

 An instruction is independent if it does not depend upon any unmovable instruction

above it in the fragment program. For example, if an instruction I1 is dependent upon a previous

instruction that is not movable, then I1 is not movable. This restriction is obvious because the

previous instruction must execute before I1 and moving I1 to VPs will cause it to execute before

the instruction that it depends upon.

 [18] found that their technique of moving instructions from FPs to VPs improved the

performance of ten out of eighteen GPGPU programs tested. The technique did not work for all

12

programs because offloading work from FPs to VPs increases the amount of data passed between

the two. During this passing of data from VPs to FPs within the GPU pipeline, the rasterization

and interpolation process became the bottleneck of some of the applications. While the

technique can certainly increase efficiency of GPGPU programs, implementing the technique

requires extensive knowledge of GPU programming. Thus, the team will not attempt this

technique during the project.

1.2.4.3 GPU Clustering
[19] discusses the design, implementation, and results of using the Lattice Boltzmann

Model (LBM) for flow simulation on a GPU cluster. The GPU cluster uses 32 nodes that are

connected by a 1 Gigabit Ethernet switch. Each node has two Pentium Xeon 2.4GHz processors,

2.5GB of memory, and one GeForce FX 5800 Ultra with 128MB of memory. The GPU cluster

executed each step of the simulation 4.6 times faster than [19]'s CPU cluster implementation.

 [19] first developed an LBM algorithm on a single GPU. The algorithm ran 8 times

faster on the GeForce FX 5900 Ultra when compared to their CPU version running on a Pentium

IV 2.53GHz. One can easily visualize the design of the LBM used for the single GPU algorithm

as a rectangle in three dimensions.

 When scaling the LBM onto the GPU cluster, [19] roughly split the domain into cubes.

Each node processes one cube. The data along the borders of each cube have to pass to

neighboring GPUs for computation. This introduced a bottleneck while transferring data from a

node's GPU to its CPU, and then across the network.

 The primary challenge for [19] was minimizing the cost of communication between

nodes. [19]'s cluster was hindered by using an AGP 8x bus, which only has a peak upstream of

133 MB/sec. They were also hindered by the fact that each GPU only had 128 MB of memory.

13

 According to the team's test results, between 24 to 28 nodes was optimal. With more

than 28 nodes the performance dropped significantly due to network collisions and other issues.

In an effort to combat the network issues, the team set up a scheduling routine that made sure

that not all of the nodes were transmitting border data at the same time.

 Overall, [19] concluded that the price per performance of their GPU cluster was

significantly better than purchasing a comparable CPU cluster. Today, with the performance

increases in GPUs such as significantly more GPU memory and processing cores, the

performance of [19]'s GPU cluster would only be greater. While a GPU cluster is not within the

budget for the project, the promise of GPU clusters is certainly interesting.

1.3 Goals and Objectives
The team's ultimate goal is to port the most promising portion of IPSA into a working

GPU-based prototype that performs at least twice as fast as its CPU-based counterpart. The

ultimate goal of the project is certainly lofty, especially considering that none of the team

members has any experience working with GPUs. Since the team is lacking in general

experience with GPUs, the team must meet many preliminary learning, discovery, and testing

goals before the team attempts to tackle the final goal.

First, the team will review the GPU programming tutorials in [20] and [21]. These

tutorials demonstrate the basic concepts of using graphics processing pipeline to perform non-

graphics related tasks. All of the tutorials that the team will review use Cg to complete the GPU

programming tasks. After completing the tutorials, the team will produce GPGPU programs that

demonstrate the best performance possible for select GPU-based algorithms barring hand-writing

Pixel Shader 3.0 assembly code. These GPGPU case study programs are the deliverables of this

first phase.

14

Next, the team will examine the BrookGPU example code and explanations in [16]. The

team will learn to write simple GPU-based programs that implement general GPGPU techniques

such as map and reduce. The GPGPU programs that demonstrate map and reduce are the

deliverables for the second phase.

Once all team members have a grasp of GPGPU techniques and BrookGPU

programming, the team will begin analyzing the feasibility of porting IPSA to the GPU. This

will include a thorough study of the algorithm so that all team members understand the

processing steps and data structures involved. During this third phase, the team will develop a

profiling program, which will analyze the runtime spent in each section of IPSA and determine

the most lucrative portions of IPSA for porting to the GPU.

During the final phase of the project, the team will implement on the GPU the portion of

IPSA that has the most promise for parallelized processing. The team will also develop a

prototype that demonstrates how the IPSA algorithm could transfer and receive data from the

GPGPU program. The final deliverables of the project are the GPU-based program that

implements a portion of IPSA and the IPSA-GPU interaction program that demonstrates how

IPSA will access the GPU.

1.4 Overall Approach
The team will follow the waterfall model for the project. Since the project consists of

porting a portion of an existing, well-defined algorithm to run on a GPU, the waterfall model is

the best choice for a development model. After completing the initial learning and discovery

goals listed under the Goals and Objectives section, the team will follow the general waterfall

process model as shown in Figure 1.4a.

15

In addition to the waterfall model, the team will use a version of the iterative

development model as shown in Figure 1.4b for determining the best possible translation of

IPSA 's data structures into comparable data structures for the GPU and for determining the best

fragment programs for performing the GPU computations. This process will include many

design, implementation, and evaluation phases as the team refines the data structure and

fragment program designs to achieve maximum performance. Since the design of the data

structures is one of the most important issues to consider with GPGPU methods, this iterative

development will be a large portion of the project.

Figure 1.4a: The Waterfall Model

Figure 1.4b:
The Iterative Development Model

Graphics taken from Wikipedia.com under the Creative Commons Attribution ShareAlike License v. 2.5.

 The team will use Cg and BrookGPU for developing the project's GPU-based programs.

This decision is based on recommendations from Robert Luke and Derek Anderson, both

graduate students that have experience porting algorithms to the GPU. The development, testing,

and production environment includes two different graphics cards: an NVIDIA 8800 GTX with

16

128 processing cores and 768 MB of memory and an ATI x800 XT PE with 16 processing cores

and 256 MB of memory.

1.4.1 System Diagram
 The program will include many modules as detailed in Figure 1.4.1. An outside source

such as an existing program within ProteinDBS will request to run the protein retrieval algorithm

with a given set of parameters. The IPSA Request Handler, a component running on the CPU

that is a modified version of the program that the original IPSA developer created, will receive

the request and ultimately return the result. The IPSA Request Handler will load the nine IPSA

index files and send the proteins to process to the GPU Program Loader. The GPU Program

Loader will create the necessary data structures on the motherboard memory and load the GPU

program onto the GPU.

 Once the data is loaded onto the GPU, the goal of the GPU program is to execute the

algorithm while minimizing the amount of references to non-GPU memory or procedures. The

Retrieval Initializer will generate the GPU data structures that correspond to the CPU data

structures created earlier. Once initialization of the memory is complete, the Stream Process

Distributor will begin executing the algorithm.

 The Stream Process Distributor executes the kernel programs that run on each data point

in the GPU's memory. The component sends the datasets to be processed to the stream

processors (pixel shaders) on the GPU. Each of these stream processors produces results that the

Stream Processor Distributor receives and aggregates accordingly.

Once the stream processing is complete, the Result Handler component on the GPU sends

the GPU Program Loader the result. The GPU Program Loader stores the result in the

motherboard memory and sends the GPU result to the modified IPSA algorithm. The modified

17

IPSA algorithm executes the CPU-based IPSA algorithm while using the results that the GPU

produced for the specific calculations that the team ported to the GPU. Once the Modified IPSA

component sends the IPSA Request Handler the final result, the IPSA Request Handler sends the

result to the outside source that requested the retrieval.

Figure 1.4.1: The Component Diagram

18

1.4.2 Advantages and Disadvantages
 The advantage of the above component layout is that the layout ensures that the GPU-

based algorithm minimizes its interaction with the CPU and motherboard memory. The key to

gaining a speedup is to reduce the amount of GPU-CPU interaction. One needs to design the

system to run on the GPU for the highest possible percentage of overall processing time.

 The main disadvantage to the team's approach is the difficulty in coordinating efficient

data structures between the GPU and CPU memory. This disadvantage is acceptable because it

is currently the only way to use GPUs for general purpose computing. Since GPUs cannot store

objects and data in the same way as CPU and motherboard memory, one must create a

translation between the two representations. This translation and choice of data representation

on the GPU is critical to the efficiency of GPU-based algorithms.

1.4.3 Costs
 The most obvious costs of the project are the costs of the hardware. An NVIDIA 8800

GTX alone currently costs 575 dollars while an ATI x800 XT PE costs 250 dollars [22]. The

hardware costs are definitely expensive for a college student, but Dr. Shyu's budget can

sufficiently handle the cost. Section 2.3 presents a more thorough cost analysis.

19

2 Requirements Analysis

2.1 System Requirements and Constraints
The system has many requirements and constraints including required hardware, quality

and reliability requirements, human factors, required software libraries, and performance

requirements. While all constraints are important, the human factors in Section 2.1.3.2 had the

largest impact on the project's timeline and goals. The time requirements in Section 2.3.1 were

also significantly affected by the human factor constraints.

2.1.1 Operating Environment
The team will use two development machines as detailed in Table 2.1.1. The team will

use multiple development machines in order to alleviate the human-based constraints described

in Section 2.1.3.2 and to meet the project goals in the limited time span. Dr. Shyu provided

Computer 1 while Todd Sullivan, one of the team members, provided Computer 2. Since both

video cards support OpenGL and DirectX and both operating systems provide proper drivers for

their respective video cards, the Cg and BrookGPU programs will execute correctly on both

machines.

 Computer 1 Computer 2
Video Card NVIDIA 8800 GTX ATI x800 XT PE
 Processing Cores 128 16
 GPU Memory 768 MB 256 MB
CPU Intel Pentium 4 2.8 GHz AMD64 3400+
CPU Memory 4 GB DDR400 3 GB DDR400
Operating System Fedora Core 6 (Linux) Windows XP/Cygwin

Table 2.1.1: The Development Machines

As described in Section 1.2.3.2, BrookGPU's DirectX runtime is significantly faster than

its OpenGL runtime. While this does not affect the development phase of the project, the

restriction certainly affects the performance of the BrookGPU programs. Due to time and budget

20

constraints, the team cannot install a Windows operating system on Computer 1. Instead, the

team has to use a free Linux distribution, which does not provide DirectX. Thus, in a real-world

BrookGPU-based IPSA program, Dr. Shyu should run the program in a Windows environment

in order to achieve maximum performance.

While BrookGPU's DirectX runtime is faster than its OpenGL runtime, working in

Windows comes with its costs. In order to take advantage of widely available Linux libraries

and other tools, the team must compile and execute the BrookGPU program using Cygwin, a

Linux-like environment for Windows. As a result, in order to achieve the performance gain from

the BrookGPU DirectX runtime, the team must manage working in an entwined Windows/quasi-

Linux environment.

 The team will not need to manage any web servers or database environments. IPSA's

data structures are stored as nine index files. Each index file is a serialized Java object. IPSA's

own algorithms and tools maintain its database. The team's GPU-based program will need to

access IPSA's data structures, but the program will not need to alter them in any fashion. Thus,

the team can access IPSA's local database by calling methods in Java in a similar fashion to

Java's built-in data structures such as Vector and TreeMap.

2.1.2 Market Users and Characteristics
In compliance with U.S. regulations, the team will not violate any patents held by other

GPGPU researchers and companies. The tools that the team will use for the project, such as Cg

and BrookGPU, do not impose any regulatory or license-based restraints on the project. Sections

1.1.1 and 1.1.2 describe the project's market demand and customer requirements respectively.

21

2.1.3 Environmental Constraints
In order to satisfy customer requirements, the team must address quality and reliability

constraints. Due to the nature of the system, the GPU-based program meets suitability and safety

requirements because they are built into the original IPSA algorithm and, provided the GPU-

based program is a direct port of portions of IPSA, are not actual requirements for the project.

The team must also accommodate many human factors that are uncontrollable and sometimes

unpredictable. The majority of these human factors reduce the time available for analyzing

IPSA, designing the GPU-based solution, and implementing the prototype.

2.1.3.1 Quality and Reliability
The GPU-based solution must reliably provide similar results in comparison with the

original algorithm. The original IPSA algorithm, written in Java, uses double precision floating

point numbers. Current video cards use single precision floating point numbers. Due to this

constraint, the GPU-based computations will offer less precision than the original CPU-based

computations. This constraint is unavoidable in current hardware. The team hopes that since all

computations will be less precise, the resulting values will remain the same in relation to each

other. Since the resulting values will remain the same relative to each other, the ranking scheme

will still return the same result.

2.1.3.2 Human Factors
Human factors severely reduced the amount of time available for the third and fourth

phases of the project as described in Section 1.3. The team did not receive the IPSA source code

until April 2. Upon receipt of the algorithm, the team did not receive the algorithm's dataset until

April 6. The source code contained no inline comments and no documentation explaining the

process of compiling and executing the various IPSA modules.

22

Additionally, the source code did not initially compile correctly because the team lacked

several required libraries and the source code had multiple locations of hard-coded, system-

specific paths. These library dependencies and hard-coded paths were not disclosed in any

documentation and IPSA's original creator did not remember all of the locations where paths

were hard-coded. As a result of these issues, the team was not able to successfully compile and

execute IPSA until April 11.

Aside from human factors pertaining to source code issues, the team did not receive the

primary development machine, Computer 1, until April 2. The machine had Red Hat Linux

preinstalled, which was partially corrupted and unusable. Thus, the team spent a few days trying

to fix the system. Once the proposition of fixing the system became futile, the team reformatted

Computer 1's hard drive, installed Fedora Core 6, and installed all of the required libraries as

detailed in Section 2.1.5. The primary development machine was functional on April 5.

Due to these human factors, the team had approximately two and a half weeks to profile

IPSA, choose a suitable section to port to the GPU, and develop the prototype. The team

remained steadfast (to no avail) in requesting the required source code, dataset, and development

machine prior to the delivery of the items. To counter these human factors, the team spent the

time before delivery of the items learning to program in Cg and BrookGPU and completing the

first and second phases of the project's goals as described in Section 1.3. The team also

countered these limiting factors through time management that allowed the team members to

dedicate significant portions of each day to the project during the two-week period before the

project's presentation at the Advisory Board.

23

2.1.4 System Components
The primary system components are the IPSA index files, the Java-based IPSA programs,

and the GPU-based program that the team will develop. The team will develop a modified

version of the Java-based IPSA algorithm that demonstrates how to use the GPU-based program

for performing select calculations. The team will not manipulate the IPSA index files. Instead,

the team will access the indexes through the Java-based IPSA program.

2.1.5 Software Interfaces and Libraries
The team will use Cg and BrookGPU to develop the deliverables described in Section

1.3. These libraries require OpenGL or DirectX to run. As covered in Section 2.1.1, both

development machines contain support in hardware and software for OpenGL, while Computer 2

contains support for DirectX. When using OpenGL, the Cg and BrookGPU programs also both

require GLUT, the OpenGL Utility Toolkit, and GLEW, the OpenGL Extension Wrangler.

 Since the IPSA algorithm is written in Java, the team will use a modern Java Virtual

Machine for Java 1.5 to execute the IPSA algorithm. Java includes constructs such as the

Runtime.exec() method for executing operating system-specific commands. The team will use

Runtime.exec() to execute and control the GPU-based program from within Java.

Since this method uses commands specific to the machine's operating system, the team

will have to use different commands for invoking the GPU-based program on a Linux machine

versus a Windows machine. The primary difference is that in Windows the team will have to use

Runtime.exec() to load a new Cygwin instance and then load and control the GPU-based

program from within the Cygwin process. On a Linux machine the team will simply use

Runtime.exec() to load and control the GPU-based program directly.

24

2.1.6 Communication Interfaces
The team will manage the communication between the Java-based program and the GPU-

based program using the features of the Process object in Java. After loading the GPU-based

program using the Runtime.exec() method in Java, the team will control the GPU-based program

by using the process' standard input and output streams. Java's Process object allows the team to

read from the GPU-based program's standard output and write to its standard input as if the GPU

program is running in a console and the Java program is the keyboard and screen.

Cg and BrookGPU manage the communication interface between the CPU processes and

the GPU processes. Additionally, the IPSA programs manage the communication channels

responsible for receiving retrieval requests and returning results. Thus, the team has little

oversight responsibilities and abilities in regards to these communication interfaces.

2.1.7 Hardware Interfaces
Table 2.1.1 details the hardware for each development system. The only notable

interface for the project is the connection between the video card and the CPU in each machine.

Computer 1 contains a PCI Express 1.0 bus that connections the 8800 video card with the CPU.

Computer 2 uses an AGP 8x bus for connecting the x800 video card with the CPU. The PCI

Express 1.0 bus has a maximum data rate of 4 GB/s while an AGP 8x bus has a maximum data

rate of 2.1 GB/s. While these constraints limit the maximum performance that the GPU

programs can achieve, they do not affect the design or development details of the GPU-based

programs.

25

2.1.8 System Maintenance
The team must provide full documentation for compiling and executing the deliverables

outlined in Section 1.3. Since none of the team members will be available after the project's

completion, the documentation must provide enough information for a new team to continue the

research with as few relearning periods as possible. In order to maintain the system, the

administrator will either need prior experience with GPGPU or be willing to learn GPGPU

techniques. The team strongly recommends that any maintenance staff at least have experience

with graphics programming using OpenGL or DirectX.

2.2 Performance Requirements
The portion of IPSA that the team ports to the GPU must execute faster than performing

the calculations on the CPU. The definition of "faster" is important because the GPU cannot

outperform the CPU when executing simple calculations on small vectors or matrices. For

example, the GPU performs significantly worse in comparison to the CPU when performing

calculations on three-by-three matrices because the GPU is designed to process large quantities

of data at the same time. Thus, determining which is "faster" by having each program perform

one protein chain comparison at a time will always result in the CPU-based program being faster.

In order to take advantage of the GPU, the GPU-based program should pack thousands of

three-by-three matrices into a single matrix. Instead of performing the calculation on one three-

by-three matrix at a time, the GPU-based program should calculate all of the results

simultaneously. The team should then compare the time elapsed for this bulk processing with

the average time from the CPU-based program's sequential processing of an equal number of

three-by-three matrices. Thus, the pertinent performance requirement is that the GPU-based

26

program processes all of the protein chains in bulk faster than the original CPU-based section of

code processes the protein chains sequentially.

2.3 Resource Requirements
The human factors significantly affected the time requirements for the project. The team

also required many important resources in Section 2.3.2, such as Computer 2, because of the

environmental constraints. The project's facilities were fairly small for the team size, but the

accommodations were paid for by other projects and thus acceptable.

2.3.1 Time
As described in Section 2.1.3.2, Human Factors, time management is crucial for adapting

to unpredictable events. Each team member averaged eight hours per week over a ten-week

development period, totaling 320 work hours. At an average hourly rate of fifty dollars per hour,

the time costs are $16,000, as detailed in Table 2.3.4.

Due to the environmental constraints in Section 2.1.3, each team member did not

consistently work eight hours each week. Instead, the team's work hours included a sharp,

sustained rise during the three and a half weeks at the beginning of April. In fact, over the

weekend of April 21st and 22nd two team members practiced Extreme Programming [23] and

each clocked two twelve to fourteen hour work days in a row. These irregular work patterns

were necessary to accommodate the unavoidable constraints described in Section 2.1.3.2 and

were achieved by early planning that eliminated other obligations of each team member during

the heavy development period.

27

2.3.2 Resources
Aside from the IPSA source code and protein dataset, the only resources required are the

development machines detailed in Table 2.1.1. Computer 1's video card cost $575 while its

other parts total $1,200. Computer 2's video card cost $250 while its other parts total $950. The

total resource costs are $2,975, but an important note is that most of the development machines'

parts were reused parts from other projects.

2.3.3 Facilities
The team requires at least one location where team members can operate both

development machines side-by-side. Dr. Shyu's student cubicle space meets this requirement.

The project does not incur additional expenses from using the cubicle space because the

particular cubicle is not in use by another project and Dr. Shyu's other projects pay for the costs

of the space.

2.3.4 Budget
Employment $16,000
Computer 1 $1,775
Computer 2 $1,200

Total $18,975

Table 2.3.4: The Cumulative Project Budget

2.4 Evaluation Metrics
The project's evaluation metrics are the production of the deliverables described in

Section 1.3 and a performance evaluation of the GPU-based IPSA Compute_RMSD_D1 function

that shows that the function is faster than its CPU-based counterpart. Section 2.2 includes the

project's definition of the term "faster" and describes how the team will assess the GPU-based

program's performance in comparison with the CPU-based calculations. The process is a

complete success if the team produces the deliverables and positive performance evaluation.

28

3 Design Specification
The majority of the project's design process centers around designing data structures and

designing software modules. Since IPSA includes its own data structures, the data structure

designs involve translating IPSA's data structures into GPU-compatible data. The software, on

the other hand, involves modifying IPSA's program flow to include GPU computations and

designing software for profiling IPSA and for performing the GPU-based calculations.

3.1 Hardware
The project does not require any specialized hardware designs, which allowed the team to

focus primarily on software designs. While the team did not create any hardware designs, the

project requires knowledge of the GPU pipeline and the general design of video cards. Section

1.2 discusses this general GPU design.

3.2 Data Requirements
IPSA requires many different data sources as described in Section 3.2.1. The team's

GPU-based computations involve one particular data structure – a protein chain consisting of an

array of doubles. Sections 3.2.2 and 3.2.3 describe translating these protein chains into GPU-

compatible data.

3.2.1 IPSA Data Sources
The IPSA algorithm includes nine data files as shown in Figure 3.2.1. These nine data

files include two protein lists and seven indexes. IPSA stores these data structures as serialized

Java objects. The project's goals do not require the team to alter these data structures in any way.

Instead, the team only has to access the proteins in the data structures using method calls similar

to Java's built-in Vector and TreeMap classes.

29

Figure 3.2.1: IPSA Data Sources

3.2.2 Translation to a GPU Datatype
In order to process the proteins on the GPU, the team must translate the protein's

structure in Java into a suitable structure in GPU memory. IPSA stores the protein chains as

arrays of doubles (double precision floating point numbers) that are either thirty or forty-five

elements long. Since current GPUs can only process floats (single precision floating point

numbers), the protein chains will lose half of their precision in GPU memory.

Additionally, GPUs store four floats at each pixel on a texture. These four floats are for

the red, green, blue, and alpha values of the pixel. Thus, each element of an array on the GPU is

considered a float4, which can be thought of as a C struct with floats denoted by pixel.r, pixel.g,

pixel.b, and pixel.a. Since IPSA calculates most chain values in groups of three, the GPU arrays

use the red, green, and blue floats while disregarding the alpha float.

3.2.3 Matrix Translations
When performing comparisons on chains, IPSA uses many three-by-three matrices.

Since the GPU's main skill is performing calculations in bulk, the GPU-based algorithm needs to

pack many three-by-three matrices into a single giant matrix. Figure 3.2.3 demonstrates this

process of storing many three-by-three matrices as a single texture on the GPU.

30

Figure 3.2.3: Three-by-Three Matrix Translation

First, the three-by-three matrices are placed in a larger square matrix with sides that are a

multiple of three. Second, each row of each three-by-three matrix is then placed into a single

float4 with the float4s red value storing the row's first element, green value storing the row's

second element, and blue value storing the row's third element. These float4s are arranged in

CPU memory as a one-dimensional array of float4s.

Figure 3.2.3 demonstrates this second step as the first arrow in the center of the figure.

The top row of the blue three-by-three matrix collapses into the first float4 element in the 1D

array. Similarly, each three-by-three row collapses into the single element in the 1D array that

contains the same color as the original row of floats.

After creating a one-dimensional array of float4s in CPU memory, the array is written to

a texture in GPU memory as shown by the second array in Figure 3.2.3. While writing the array

31

to a texture in GPU memory, the one-dimensional array wraps around into a two-dimensional

texture. The resulting 2D texture is three times as long as it is high.

For clarity, Figure 3.2.3 demonstrates the process with a two-by-two matrix of three-by-

three matrices. In reality, the second step (first arrow in the figure) writes the first row of three-

by-three matrices before moving to the second row. Thus, on a larger set of three-by-three

matrices the matrix denoted by orange is not placed next to the matrix denoted by green.

3.2.4 Protein Chain Translations
Since the GPU needs to compute many protein chain comparisons at once, the GPU also

needs to pack protein chains into a single large texture. As stated earlier, protein chains are

either thirty or forty-five floats long. Thus, each protein chain requires either ten or fifteen

float4s where each float4 contains three floats in the RGB values.

For efficiency reasons, the large texture containing these chains needs to store each chain

as a symmetric matrix of float4s. The smallest symmetric matrix that contains at least fifteen

elements is a four-by-four. Figure 3.2.4 shows how multiple protein chains map into the large

texture.

Figure 3.2.4: Protein Chain Mapping into Texture

32

The colored blocks in Figure 3.2.4 denote float4s of the texture that each chain occupies.

The white blocks are float4 elements that contain all zeroes and are necessary wasted space. The

blue, green, and orange chains are thirty floats long. The last chain is forty-five floats long.

Each thirty-float chain wastes six float4s while each forty-five-float chain wastes one float4.

3.3 Software
The project's software designs include the IPSA Profiler, Java-C++ Interaction, and the

Compute_RMSD_D1 function. The IPSA Profiler and Java-C++ Interaction programs will

integrate into the original IPSA program. The Compute_RMSD_D1 function is a GPU-based

program that is a translation of IPSA's Compute_RMSD_D1 function.

3.3.1 IPSA Profiler
The IPSA Profiler's purpose is to provide a convenient method for recording the

processing time of each section of IPSA and analyzing the results. While analyzing a program,

the profiler maintains a stack of each layer of executing code. The layer on the top of the stack is

the current, most narrow section of code that is executing in the program.

When entering a new section of the program, the profiler places a new layer on the top of

the stack. The profiler records the new layer's start time, depth, and layer number when adding

the layer to the stack. When exiting a section of the program, the profiler pops off the layer at

the top of the stack. The profiler records the popped layer's end time and writes the layer's

information to the current session's log file. The profiler also maintains execution time totals for

each layer in relation to its name and its path.

Once the program completes execution, the profiler sends the log file to an analyzer that

generates a summary report of the profile. The analyzer creates a plain-text report that displays

total time by layer, percent total time by layer, total time by layer with respect to its path, and

33

percent total time by layer with respect to its path. The analyzer sorts these values so that the

report clearly shows the sections of the program that consume the majority of the execution time.

3.3.1.1 Class Diagram
The IPSA Profiler contains three classes as shown in Figure 3.3.1.1. The Profiler class

and ProfileAnalysis class are public classes. The Layer class is an internal class of the Profiler

class.

When entering a new section of a program, the program calls the Profiler class' push

method. When exiting a section of a program, the program calls the Profiler class' pop method.

The Profiler class' close method writes the final profile to disk.

Figure 3.3.1.1: IPSA Profiler Class Diagram

34

3.3.1.2 Data Flow Diagram
Figure 3.3.1.2 illustrates the activity of an instance of the Profiler class when profiling a

program. The actions correspond to the previous English language description of the IPSA

Profiler. The Profile Analysis class does not need to a data flow diagram because the process

simply involves parsing a text file, calculating percents, sorting the results, and output the sorted

results.

Figure 3.3.1.2: IPSA Profiler Data Flow Diagram

35

3.3.2 Java-C++ Interaction
Figure 3.3.2 illustrates the control flow of the original IPSA algorithm. The program

loads the index objects from disk as serialized Java objects, sends the proteins to a Rank Proteins

procedure, and then sends the protein scores to a Find Best Score procedure. The Find Best

Score procedure sorts the scores in descending order and outputs the results.

Figure 3.3.2: Java-C++ Interaction High-Level Process Diagram

IPSA's designer implemented the algorithm in Java. Regardless of the library or method

used for GPGPU, the GPU-based program is ultimately a C++ application. In order to integrate

the two, the Java program needs to start and control the C++ application.

The Java program starts the C++ program by executing an operating system-specific

command and attaching the new process to a Process object. The Java program then extracts the

input and output streams from the Process object. The Java program uses the output stream in a

36

similar way to a human using keyboard input to a command line program. The Java program

uses the input stream to read data from the C++ program.

When the C++ program reads from its standard input, it reads commands sent to it by the

Java program through the Process object's output stream. Similarly, when the C++ program

writes to its standard output, it writes data to the Process object's input stream. This process is

similar to connecting programs together using sockets. The difference is that neither program

has to know anything about sockets and the C++ program is completely oblivious to who

controls it. Thus, when testing developers can execute the C++ program from the command line

and provide input using the keyboard.

Once the Java program starts the C++ program, it provides the C++ program with the list

of protein chains to compare. The C++ program simultaneously computes all of the

comparisons. Once the computations are complete, the C++ program sends the results to the

Java program. The Java program stores all of the results and begins the normal IPSA algorithm.

Whenever the Java program's execution reaches a computation that the C++ program calculated,

the Java program retrieves the result from memory instead of computing the result with the CPU.

37

3.3.2.1 High-Level Process Diagram

Figure 3.3.2.3: Java-C++ Interaction High-Level Process Diagram

38

3.3.3 Alternative Java-C++ Interaction
Alternatively, the Java program could send a protein chain comparison request to the

C++ program when the Java program needs the comparison result. The two programs would

communicate in the same way, but instead of bulk processing the comparisons in the beginning

of the algorithm, the C++ program would process each comparison as they are needed. Figure

3.3.3.1 depicts this alternative design.

3.3.3.1 Alternative High-Level Process Diagram

Figure 3.3.3.1: Alternative Java-C++ Interaction High-Level Process Diagram

39

3.3.3.2 Advantages and Disadvantages
The primary disadvantage to the original Java-C++ interaction design in Figure 3.3.2.3 is

the high memory usage. While the C++ program is calculating protein comparisons, the C++

program and the Java program both have all of the protein chains stored in memory. Once the

C++ program finishes calculating the comparisons, the Java program stores the results in

memory for the entire duration of the IPSA algorithm.

The alternative design eliminates this memory usage issue because the C++ program only

stores the two proteins that it is currently comparing. Additionally, the Java program does not

store all of the results in memory for the entire algorithm. Instead, the Java program only stores

one comparison result at any point in time.

Unfortunately, the alternative design does not take advantage of the GPU's ability to

calculate thousands of protein comparisons simultaneously. While requiring less memory, the

alternative design has significant performance issues. Thus, the higher memory usage of the

original design is necessary to take advantage of the GPU's bulk computation ability.

3.3.4 The Compute_RMSD_D1 Function
Section 5.3.1 describes the results of profiling IPSA with the IPSA Profiler. The results

of the profiling clearly show that the Compute_RMSD_D1 function within IPSA has the most

potential for GPU-based computation. The Compute_RMSD_D1 function performs a

comparison on two protein chains. Each protein chain is either thirty or forty-five floats long.

The algorithm produces many intermediate three-by-three matrices during the process. The

result is a single float.

40

3.3.4.1 Algorithm
The following bullets and pseudo code describe the Compute_RMSD_D1 algorithm. The

input chains that the algorithm compares are denoted by chain8 and chain9. All of the

calculations are matrix calculations. Most of the calculations perform computations on three

different lines of the matrices at the same time. The pseudo code is a broad generalization of the

actual process for one comparison. The GPU-based version of the algorithm must adapt each

computation to work on a two dimensional array containing thousands of comparisons that are

computed simultaneously.

1) Calculate the mean of each chain

mean8 = Sum(chain8) / Size(chain8);
mean9 = Sum(chain9) / Size(chain9);

2) Shift each chain's floats by its corresponding mean values.

PointsOf(chain8) = PointsOf(chain8) – mean8;
PointsOf(chain9) = PointsOf(chain9) – mean9;

3) Calculate a three-by-three matrix tR.

Row1(tR) = Sum(PointsThatAreMultiplesOfThree(chain8) * chain9);
Row2(tR) = Sum(PointsThatAreMultiplesOfThreePlus1(chain8) * chain9);
Row3(tR) = Sum(PointsThatAreMultiplesOfThreePlus2(chain8) * chain9);

4) Transpose tR into R.

R = Transpose(tR);

5) Calculate the three-by-three matrix tR * R.

tRR = MatrixMultiply(tR, R);

6) Calculate the eigenvalues mu and eigenvectors a of the tR * R matrix.

mu = GetEigenvalues(tRR);
a = GetEigenvectors(tRR);

7) Calculate and normalize the b vectors.

b = Sum(R * ColumnsOf(a)) / SquareRoot(mu);

41

8) Calculate the rotation matrix tU using the b vectors and the eigenvectors a.

tU = ColumnMultiply(b, a);

9) Transpose tU into U.

U = Transpose(tU);

10) Calculate the root mean square error.

tempchain = Sum(ColumnsOf(chain9) * Columns of U);
rms = Sum(Square(chain8 - tempchain));

11) Return the root mean square deviation.

rmsd = SquareRoot(rms / chain_size);

3.3.4.2 Eigenvalues and Eigenvectors
Step 6 in Section 3.3.4.1 involves calculating eigenvalues and eigenvectors. The process

of computationally determining a matrix's eigenvalues and eigenvectors is complicated. This

process requires more time than the project's constraints allow. Thus, the GPU-based prototype

does not calculate the eigenvalues or eigenvectors. To ensure the accuracy of the output, the

team will hardcode these values while testing the program. To ensure an accurate performance

evaluation, the team will remove the eigenvalue and eigenvector computation time from the

execution time of the CPU-based algorithm as described in Section 5.3.2.

3.4 Testing Methods
The team will use comparisons between program output and either hand-determined

correct output or output from the original IPSA program to determine whether each piece of

software is working correctly. The IPSA Profiler and Java-C++ Interaction will use hand-

determined output. The Compute_RMSD_D1 function will naturally use the output from the

original IPSA function.

42

3.4.1 IPSA Profiler
The team will test the accuracy of the IPSA Profiler by running the profiler on a program

that simply contains multiple nested layers that each cause the execution thread to sleep for a

predefined number of seconds. Since each layer sleeps for a predefined number of seconds, the

team can hand calculate a report that summarizes the execution time at each layer and along each

execution branch. The team will compare the hand-calculated report with the report that the

profiler generates. If the reports are the same, then the IPSA Profiler does not have any bugs and

works properly.

3.4.2 Java-C++ Interaction
The team will test the Java-C++ interaction by using a predefined list of protein chain

comparisons and comparison results. The Java program will send the list of protein chain

comparisons to the C++ program. The C++ program will match each protein chain comparison

with its predefined comparison result and send the comparison results back to the Java program.

The Java program will output the results to the console. If the results are the same as the hand-

calculated results then the Java-C++ interaction works correctly.

3.4.3 The Compute_RMSD_D1 Function
The team will test the GPU-based Compute_RMSD_D1 function by outputting to the

console the result of each step described in Section 3.3.4.1. The team will compare these results

with the corresponding results from the original Java function. If all of the results are the same,

then the GPU-based function calculates the values correctly for a single protein chain

comparison.

Since the GPU-based function calculates thousands of comparisons at the same time, the

team needs to determine if all of the comparisons are calculated correctly. To do this, the team

43

will write the textures to CPU memory after each step described in Section 3.3.4.1 and then

output to the console selected results from the matrix of results. The team will compare these

results with the corresponding results from the original Java function.

3.5 Scheduling and Task Assignments

Table 3.5a: Schedule

44

Table 3.5b: Task Assignments

 Mathew
Alvino

Travis
McBee

Heather
Nelson

Todd
Sullivan

Problem Statement
Writing
Editing

Requirements Analysis

Writing
Editing

Design Specification

Designs
Writing
Editing

System Implementation

2D Arrays versus 1D Arrays
Cg Mathematical Computation

Cg Average Random Walk Distance
IPSA Profiler

IPSA Java-C++ Interaction
IPSA Compute_RMSD_D1 Function

Writing
Editing

System Performance and Evaluation

2D Arrays vs. 1D Arrays Data Collection
Cg Mathematical Computation

Data Collection

Cg Average Random Walk Distance
Data Collection

IPSA Compute_RMSD_D1 Function
Data Collection

Writing
Editing

Summary and Conclusions

Writing
Editing

Future Work

Writing
Editing

Advisory Board Presentation

Presentation Creation
Presentation Editing

45

4 System Implementation
The system implementations involve a wide variety of programming languages and

technologies. The GPGPU Limitations Demonstration and the Compute_RMSD_D1 function

use C++ and BrookGPU while Mathematical Computation and Average Random Walk Distance

use C++ and Cg. As indicated earlier by the name, Java-C++ Interaction includes a Java

program and a C++ program.

4.1 GPGPU Limitations Demonstration
GPU-based programs have many limitations that the team must take into account when

implementing the deliverables. GPUs do not have random access memory, so programmers need

to avoid lookups. Branching on the GPU and transferring data from the CPU to the GPU are

also very costly. Two dimensional textures are also significantly more efficient than one

dimensional textures.

4.1.1 2D Arrays versus 1D Arrays
The 2D Arrays versus 1D Arrays program demonstrates the superiority of using two

dimensional arrays in GPU computations. The program generates a set of random floats in the

range [0.0, 1.0) and loads the numbers onto a 2D texture and a 1D texture on the GPU. Next, the

program multiplies each float by 256 and then takes then floor of the result. The program

compares the execution time for each texture with the execution time of performing the same

operations on the CPU.

The team implemented the 2D Arrays versus 1D Arrays program using BrookGPU. The

2D texture is a two dimensional Brook stream of size 1280 by 1280. Similarly, the 1D texture is

a one dimensional Brook stream of size 1280. The previously described operations execute on

datasets of 1,000 elements to 1,000,000,000 elements. Since a single Brook stream cannot hold

46

the required amount of elements, the program repeats the process multiple times until the number

of elements operated on equals the target dataset size. One Brook kernel performs the

multiplication and floor operation on each element.

4.2 GPGPU Potential using Cg
In order to facilitate the group’s understanding of GPGPU programming techniques, the

team implemented two fundamental programs as case studies for GPGPU performance

evaluation. Before creating Cg programs, the hardware must include the correct libraries and

development environment as described in Section 2.1.5. For this portion, the group used

Computer 1, which includes an NVIDIA 8800 GTX graphics card and an Intel Pentium 4 2.8

GHz processor. The necessary software includes the OpenGL Utility Toolkit (GLUT) and

OpenGL Extension Wrangler (GLEW) libraries, the Cg Toolkit for shader support, and a C/C++

compiler for the actual development.

4.2.1 Mathematical Computation
Initially, the group implemented a complex parallel mathematical computation over each

element in a large array. This example, derived from the Basic Math Tutorial in [21], served as

the basis for understanding the GPU pipeline and allowed the team to analyze the performance of

the GPU in its ideal use. In order to perform this computation, the group performed several

initialization steps. In all, a simple four-line CPU program was translated into 532 lines of code,

suitable for execution using the GPU. Each step, as outlined in the following paragraphs,

enables the use of computational GPU processing.

Before attempting to utilize the GPU processors, the program must fill a CPU array with

the data that will later be passed to GPU textures. Since the CPU array lies in a one-dimensional

47

space, the program will translate the elements into a two dimensional representation.

Furthermore, several libraries enable the program to pass data onto the GPU.

First, the GLUT library allows the program to create a context for OpenGL by opening an

invisible window. For graphics related GPU programming, this window displays the images and

textures. However, GPGPU programming only requires the window in order to provide a

framework for computation, since no output will be displayed. In addition, the algorithm

initializes GLEW in order to load important OpenGL extensions, such as those that handle

floating-point numbers. The libraries will enable Cg to create a context for general purpose

computation.

Following the library initialization steps, the program creates a framebuffer object that

will allow the CPU to interpret the GPU result. For example, the GPU represents data using four

channels, where each channel represents eight bits. In graphics programming, these channels

correspond to the amount of red, green, blue, and alpha transparency in an image. However, the

use of this offscreen buffer to render calculations allows the program to bypass the limitations

caused by eight bit channels. An offscreen framebuffer object is essential to GPGPU

programming since it provides better consistency between the CPU and GPU.

Once the program initializes the environment, the algorithm may create GPU textures for

the CPU data and initialize the shader. A function generates each texture with a specific

identification and transfers the CPU data to the GPU. Then, the algorithm creates a fragment

program, or computational kernel. The kernel behaves as a loop where it acts on each element in

the texture, independently of the other elements. Furthermore, the actual kernel, or shader, is

written in Cg and loaded into the fragment program. Figure 4.2.1 shows the actual shader source

used for this computation.

48

float4 saxpy (
 in float2 coords : TEXCOORD0,
 uniform samplerRECT textureY,
 uniform float alpha) : COLOR {
 float4 y = texRECT (textureY, coords);
 return alpha*y+ (alpha+y)/(alpha*y)*alpha;
 }

Figure 4.2.1:
Cg Shader Source for Mathematical Computation

After each initialization step, the GPU can finally perform the computation on each

element in the texture. This algorithm uses a ping-pong technique to compute the result using

the value of the texture element and stores the result back into the same element. The algorithm

renders each pixel, or element, in the texture to a quad. Finally, the program transfers the

resulting data back to the CPU so that it may be displayed to the user.

4.2.2 Average Random Walk Distance
In order to further study the potential for GPU implementations of CPU programs beyond

mathematical computations, the team implemented a common problem in protein folding

algorithms. The Random Walk Distance algorithm generates the average distance between

points in a walk using a two dimensional space. Since this technique is often used in protein

folding algorithms, it serves as a useful model to examine the potential of GPGPU algorithms to

serve protein prediction and retrieval research.

Many of the steps outlined in the preceding section were also followed to initialize the

Random Walk environment. As before, the program included and initialized the GLUT and

GLEW libraries, prepared the offscreen buffer, and initialized four arrays with random points to

follow during the walk. After creating the four CPU arrays, the program created textures and

transferred the CPU data onto the GPU. Finally, the algorithm used the ping-pong technique to

49

store results and implemented the reduction technique to return a single value, the average

distance of the walk.

Although the program follows many similar steps as the complex mathematical

computation, the group made significant improvements to the algorithm. For example, the CPU

algorithm performs a complex computation on each element, sums the results, and returns the

average. This type of computation therefore requires the use of multiple Cg shaders in order to

first run the equation and finally sum all of the results. Therefore, the Random Walk Distance

algorithm uses two shaders, which each binds to a fragment program and executes using the

same textures.

Since Random Walk Distance uses the ping-pong technique during the initial

mathematical computation, the program does not need to create an additional texture for use

during the summation. First, the function maps the shader described in Figure 4.2.2 to the

elements in each texture. Texture y, via the ping-pong technique, switches from a read-only to a

write-only texture in order to store the returned results. After mapping the equation to each

pixel, the algorithm follows the reduction technique in order to sum the entire result. In general,

a reduction will not prove faster on a GPU than on a CPU since the result is dependent on each

element in the texture, thereby eliminating the potential for parallel computation. However,

since the group has chosen to represent each element as a float4, including the result, each

channel of the result is summed independently, as shown in Figure 4.2.2. This allows any

reduction algorithm, such as summation, to perform approximately four times faster on a GPU

than on a CPU. Once the GPU returns the result, the CPU must take one final step to sum the

four channels of the result.

50

float4 map(
in float2 coords: WPOS,
uniform samplerRECT textureX,
uniform samplerRECT textureU,
uniform samplerRECT textureV,
uniform samplerRECT textureY) : COLOR {

float4 x = texRECT(textureX, coords);
float4 y = texRECT(textureY, coords);
float4 u = texRECT(textureU, coords);
float4 v = texRECT(textureV, coords);
return sqrt(pow((x-u),2) + pow((y-v),2));

}

float4 summation(
float2 coords: WPOS,
uniform samplerRECT textureY) : COLOR {

float2 topleft = ((coords-0.5)*2.0)+0.5;
float4 result;
float4 val1 = texRECT(textureY, topleft);
result.r = val1.r + val1.g + val1.b + val1.a;
float4 val2 = texRECT(textureY, topleft+float2(1,0));
result.g = val2.r + val2.g + val2.b + val2.a;
float4 val3 = texRECT(textureY, topleft+float2(1,1));
result.b = val3.r + val3.g + val3.b + val3.a;
float4 val4 = texRECT(textureY, topleft+float2(0,1));
result.a = val4.r + val4.g + val4.b + val4.a;
return result;

}

Figure 4.2.2:
Cg shaders for Average Random Walk Distance

4.3 IPSA
Section 2.1.3.2 describes the compiling and organizational problems of the original IPSA

source code. In order to compile the program, the team repackaged all of the source code's

classes into a Java package called IPSA. The team added a class to the IPSA package called

Protein_Path.

Protein_Path contains several static variables that all of the classes within the IPSA

package can access. These variables include the path to the protein files, the path to the profile

directory, and counters for keeping track of execution times of different areas of the code. The

team replaced all of the hard-coded, system-specific paths in the original source code with the

path variables in the Protein_Path class. The repackaging of the source code and addition of

51

Protein_Path gives the team the ability to quickly port the source code to a new system by simply

changing the variables within the Protein_Path class.

4.3.1 IPSA Profiler
Since the creator of IPSA implemented the algorithm in Java, the team wrote the IPSA

Profiler in Java. The layers variable is a standard Java Stack instance. The two maps,

totals_with_path and totals_basename, are standard Java TreeMap instances. The out variable is

a standard Java PrintStream instance of a FileOutputStream instance.

The analysis portion of the application parses the log file based on the carriage return

character and the ": " delimiter. The entries for each layer implement the Comparable interface.

The analyzer uses multiple implementations of the Comparator interface to sort the results based

on layer name, and ascending/descending execution times.

4.3.2 Java-C++ Interaction
The Java program uses the Runtime.exec() method to execute an operating system-

specific command that runs the C++ program. The Runtime.exec() method returns a standard

Java Process object. The Process object provides methods for controlling the process. These

methods include accessing the process' input and output streams.

The Java program creates a BufferedReader and BufferedWriter from the process' input

and output streams. The BufferedReader instance contains a method for checking if the stream

has data available and a blocking method for reading a line. The team uses these two methods to

perform nonblocking reads from the C++ program. Similarly, the BufferedWriter contains a

method for writing characters and strings to the output stream and a method for flushing the

output stream.

52

The C++ program reads and writes data to the Java program using standard C printf and

scanf functions or C++'s cout and cin. Both programs write data as characters. When reading

numbers, the C++ program uses atoi(), atof(), and atoll() to convert the strings into numbers.

The Java program uses comparable conversion functions as well.

4.3.3 The Compute_RMSD_D1 Function
The Compute_RMSD_D1 function performs comparisons on thousands of chains at

once. The two dimensional arrays of chains are stored on the GPU as two Brook streams with

length and height of size N, where N is a power of two. N is currently set to 1,280. The program

uses eight N-by-N Brook streams to store the two sets of chains to compare, the three concurrent

execution lines on the sets of chains, and three extra arrays for intermediate calculations. The

program also uses three N/4-by-N/4 Brook streams for storing reduce operations and

intermediate sets of three-by-three matrices.

4.3.3.1 CPU Arrays to GPU Arrays
When writing the arrays to GPU memory and retrieving the results, the corresponding

CPU arrays must be contiguous blocks of memory. Thus, to store an N-by-N array of float4s in

CPU memory, the program allocates a one dimensional array of size N2. When referencing this

CPU array, the program uses a simple mapping function that maps to dimensional coordinates to

the one dimensional index space.

At the beginning of program execution, the program translates each protein chain into a

four-by-four array of float4s as described in Section 3.2.4. After translating a protein chain into

an array of float4s, the program inserts the protein chain into the appropriate giant one

dimensional CPU array using the previously mentioned mapping function. The program writes

53

the final one dimensional CPU arrays to the Brook streams once all of the protein chains are

placed in the arrays.

4.3.3.2 Code Translation
After initialization, the program begins the GPU-based computations. Once the GPU-

based computations begin, the program does not perform any read/write operations between the

CPU and GPU memory until the end of the algorithm. Since the algorithm includes numerous

kernels and summation operations, this section will only describe the translation process for a

few cases.

As described in Section 3.3.4.1, Step 4 of the Compute_RMSD_D1 function calculates

the three-by-three matrix tR. Figure 4.3.3.2a depicts Step 4 as the Java code in the original IPSA

source code. The for loop performs a summation on a series of multiplication operations. The

first step towards a GPU-based algorithm is to convert the for loop into a calculation on float4s

as shown in Figure 4.3.3.2b's C++ code. The three-by-three matrix tR translates to a three-by-

one array of float4s as described in Section 3.2.3 while the two chains translate into an array of

float4s with the array length divided by three.

for(i = 0; i < chain1.length/3; i++){
 a1 = i * 3;
 a2 = a1 + 1;
 a3 = a2 + 1;

 tR[0][0] += chain1[a1] * chain2[a1];
 tR[0][1] += chain1[a1] * chain2[a2];
 tR[0][2] += chain1[a1] * chain2[a3];

 tR[1][0] += chain1[a2] * chain2[a1];
 tR[1][1] += chain1[a2] * chain2[a2];
 tR[1][2] += chain1[a2] * chain2[a3];

 tR[2][0] += chain1[a3] * chain2[a1];
 tR[2][1] += chain1[a3] * chain2[a2];
 tR[2][2] += chain1[a3] * chain2[a3];
}

for(i = 0; i < sizeof(chain1); i++){
 tR[0].r += chain1[i].r * chain2[i].r;
 tR[0].g += chain1[i].r * chain2[i].g;
 tR[0].b += chain1[i].r * chain2[i].b;

 tR[1].r += chain1[i].g * chain2[i].r;
 tR[1].g += chain1[i].g * chain2[i].g;
 tR[1].b += chain1[i].g * chain2[i].b;

 tR[2].r += chain1[i].b * chain2[i].r;
 tR[2].g += chain1[i].b * chain2[i].g;
 tR[2].b += chain1[i].b * chain2[i].b;
}

Figure 4.3.3.2a:
Original Java Calculation of tR

Figure 4.3.3.2b:
Translation of tR Calculation to Float4s

54

 Once in float4 format, the programmer can break the for loop into Brook kernels that

perform a uniform operation across all of the elements of a Brook stream. As Figure 4.3.3.2b

shows, the loop consists of three separate sections of calculations. The first element of the float4

version of tR is the summation of all of the multiplications of chain1's red value with chain2's

red, green, and blue values with tR's red, green, and blue values summing the multiplications

with chain2's corresponding color. The second element of the float4 version of tR is similar,

except it uses chain1's green value, while the third element uses chain1's blue value.

 After analyzing the float4 version of the tR calculation, one sees that this operation is six

separate operations mapped onto all of the elements of chain1 and chain2. The tR calculation

consists of the three separate multiplication operations, and then three summation (reduce)

operations that sum the results from the three multiplication operations. Figure 4.3.3.2c shows

these steps in C++ code.

Multiplication Operations

for(i = 0; i < sizeof(chain1); i++){
 temp1[i].r = chain1[i].r * chain2[i].r;
 temp1[i].g = chain1[i].r * chain2[i].g;
 temp1[i].b = chain1[i].r * chain2[i].b;
}

for(i = 0; i < sizeof(chain1); i++){
 temp2[i].r = chain1[i].g * chain2[i].r;
 temp2[i].r = chain1[i].g * chain2[i].g;
 temp2[i].r = chain1[i].g * chain2[i].b;
}

for(i = 0; i < sizeof(chain1); i++){
 temp3[i].r = chain1[i].b * chain2[i].r;
 temp3[i].r = chain1[i].b * chain2[i].g;
 temp3[i].r = chain1[i].b * chain2[i].b;
}

Summation Operations

for(i = 0; i < sizeof(chain1); i++){
 tR[0].r += temp1[i].r;
 tR[0].g += temp1[i].g;
 tR[0].b += temp1[i].b;
}

for(i = 0; i < sizeof(chain1); i++){
 tR[1].r += temp2[i].r;
 tR[1].g += temp2[i].g;
 tR[1].b += temp2[i].b;
}

for(i = 0; i < sizeof(chain1); i++){
 tR[2].r += temp3[i].r;
 tR[2].g += temp3[i].g;
 tR[2].b += temp3[i].b;
}

Figure 4.3.3.2c:
tR's Three Multiplication and Three Summation Operations

An important observation is that each operation, which is shown as a for loop, operates

on a single element of each array and the elements of all arrays in an operation have the same

55

index. Due to these facts, the operations are parallelizable and thus suitable for GPU-based

computation. Figure 4.3.3.2d demonstrates the three multiplication operations and the

summation operation as three Brook kernels and one Brook reduction.

kernel void tR1(float4 a<>, float4 b<>, out float4 c<>){
 c.x = a.x * b.x;
 c.y = a.x * b.y;
 c.z = a.x * b.z;
 c.w = 0.0;
}

kernel void tR2(float4 a<>, float4 b<>, out float4 c<>){
 c.x = a.y * b.x;
 c.y = a.y * b.y;
 c.z = a.y * b.z;
 c.w = 0.0;
}

kernel void tR3(float4 a<>, float4 b<>, out float4 c<>){
 c.x = a.z * b.x;
 c.y = a.z * b.y;
 c.z = a.z * b.z;
 c.w = 0.0;
}

reduce void sum(float4 a<>, reduce float4 result<>){
 result += a;
}

Figure 4.3.3.2d:
Brook Kernels and Brook Reduction

 The kernels and reduction are similar to normal C++ functions. Each variable a, b, c, and

result represent a single pixel of their respective textures. The sum function performs a reduce

operation that is dependent on the size of the input and output textures. For example, if the first

texture is a four-by-four matrix and the result is a two-by-two matrix then the sum function

reduces each two-by-two matrix in the first texture into a single element in the result texture.

 In practice, the tR calculation requires eight textures. chain1, chain2, extrac1, extrac2,

and extrac3 are N-by-N Brook streams while r1_x, r2_x, and r3_x are N/4-by-N/4 Brook

streams. chain1 and chain2 contain thousands of chains as described in Section 3.2.4. Figure

4.3.3.2e describes the consecutive texture operations for calculating tR.

56

tR1(chain1, chain2, extrac1);
tR2(chain1, chain2, extrac2);
tR3(chain1, chain2, extrac3);
sum(extrac1, r1_x);
sum(extrac2, r2_x);
sum(extrac3, r3_x);

Figure 4.3.3.2e:
The tR Calculation's Kernel Calls

 The three kernels tR1, tR2, and tR3 write the appropriate multiplication results to all of

the pixels of extrac1, extrac2, and extrac3. After the multiplication operations, the three

summation operations on the three extra textures produce the tR matrix. Since the extra textures

are N-by-N and r1_x, r2_x and r3_x are N/4-by-N/4, the summation operation effectively sums

each four-by-four matrix within the extra textures and places them into a single element of the

result textures. Thus after completing all of the summation operations, r1_x contains the first

element of each chain comparison's tR float4 array while r2_x contains the second element and

r3_x contains the third element.

57

5 System Performance and Evaluation
The team used a millisecond timer for all performance evaluations. Windows, and most

other modern computer systems, do not offer timers that are better than one millisecond. Even

though the team used a millisecond timer, all computations need to take at least several seconds

in order to accurately estimate the relative performance.

The team compared the relative performance of each program by timing the GPU-based

computation and timing the same computation performing on the CPU. In all cases the

computations were repeated hundreds or thousands of times in order to make the computations

last for several seconds to several minutes. In the case of large dataset sizes that do not fit into a

single texture, the team continually wrote values to and read results from the GPU memory to

attain timings for the large datasets.

5.1 GPGPU Limitation Demonstrations

5.1.1 2D Arrays versus 1D Arrays
The 2D Arrays versus 1D Arrays program clearly shows that 2D textures are vastly

superior to 1D textures. Figure 5.1.1 shows the results from running the map operations

described in Section 4.1.1 on 2D textures and 1D textures. The left graph shows the 2D texture's

performance relative to the CPU's performance while the right graph shows the 1D texture's

performance relative to the CPU. Both horizontal axes are logarithmic. An important note is

that the left graph's vertical axis is logarithmic while the right graph's is linear. Thus, at

10,000,000 elements, the 2D texture implementation was 10,000 times faster than the CPU while

the 1D texture implementation speed was about equal to the CPU speed.

58

Figure 5.1.1: 2D Arrays versus 1D Arrays Results

5.2 GPGPU Potential using Cg
For the experienced GPGPU developer, Cg provides an excellent low-level interface to

the underlying hardware. Therefore, much more optimization is possible using Cg than with

BrookGPU. Despite the programmer's increased control when using Cg, the language still

suffers from many of the same limitations as BrookGPU. Indeed, highly mathematical

computations that run in parallel over large datasets prove much faster on the GPU. However,

common CPU operations, such as the summation, limit the realized performance gain. The

choice of language will require future developers to consider the need to quickly implement large

sections of code with BrookGPU versus the desire to optimize algorithms for an even greater

speedup using Cg.

 The team compared each Cg algorithm to a CPU counterpart. This comparison ensured

the accuracy of the Cg algorithms and provided the basis for performance evaluation. Each

algorithm features a significant speedup over the comparable CPU version due to the use of

fundamental GPGPU programming techniques.

59

5.2.1 Mathematical Computation
The highly mathematical and parallel nature of the Mathematical Computation algorithm

demonstrates the keen ability of the GPU to evaluate numbers over large datasets. As shown in

Figure 5.2.1, small arrays have little or no gain over the CPU since the cost of data transfer

remains very high. However, the algorithm grows faster with the size of the data. At the largest

texture size, 4096-by-4096 pixels, the GPU performs nearly 175 times faster than the CPU.

 Although the GPU only features 128 parallel processors, this speedup is still extremely

plausible. Since the algorithm computes the function for over sixteen million items, the cost of

data transfer is low in comparison to the cost of CPU computation. Furthermore, the GPU has

been optimized for graphics processing and can process multiple floats in a single clock cycle.

As such, an increase greater than 128 times should be expected given the intended purpose of the

GPU to efficiently process numerical data.

Figure 5.2.1: High Computation: Problem Size vs. CPU to GPU Time Ratio

60

5.2.2 Average Random Walk Distance
Average Random Walk Distance benefited greatly from the use of GPGPU techniques in

Cg. As with Mathematical Computation, Random Walk Distance features an extensive

mathematical function that will be evaluated over each element. Furthermore, protein folding

algorithms that feature random walks will likely require the evaluation of very large datasets to

cope with the growing database of proteins in the Protein Data Bank [5]. At the heart of this

algorithm’s increase in speed is its use of parallel computation over a very large texture.

 As shown in Figure 5.2.2, Random Walk Distance achieves a significant speedup on the

GPU while not as great as the speedup realized by Mathematical Computation. The GPU

evaluates the equation that Random Walk Distance implements much faster than the CPU.

However, the need to reduce the texture into a single value in order perform a summation hinders

the ability of the GPU version to outperform the CPU. Therefore, Random Walk Distance

performs a respectable 40 times faster than the CPU algorithm using the largest texture size.

Figure 5.2.2: Random Walk Distance: Problem Size vs. CPU to GPU Time Ratio

61

5.3 IPSA
The results of the IPSA programs show that the team successfully improved the

performance of IPSA, and that further performance gains are unlikely given IPSA's current

design. The IPSA Profiler results show that the team translated the majority of GPU-compatible

code when implementing the Compute_RMSD_D1 function. The Compute_RMSD_D1 function

results shows that GPU processing can significantly increase performance.

5.3.1 IPSA Profiler
The team used the IPSA Profiler's results to determine which portions of IPSA to transfer

to the GPU. Figure 5.3.1a shows the highest-level results from the IPSA Profiler. IPSA spends

eighty-eight percent of its processing time in a section called Extend. IPSA spends the

remaining twelve percent in a function called Align Items.

Figure 5.3.1a: IPSA Profile Layer 1

Figure 5.3.1b breaks the two top layers down into subsections. Align Items breaks down

into two seconds, Compute D1 and Align Items Branching. Compute D1 consumes 7% of

IPSA's total processing time while Align Items Branching consumes 5% of the total processing

time. The Extend section consists of Extend Branching, Compute D2, and Matrix Multiply.

62

Extend Branching consumes 85.7% of IPSA's total processing time while Compute D2 and

Matrix Multiply consume 2% and 0.3% respectively.

Figure 5.3.1b: IPSA Profile Layer 2

As the section names suggest, Align Items Branching and Extend Branching both contain

significant amounts of branching and control structures. As described in Section 4.1, these

branching and control structures are very costly to perform on a GPU. Thus, Align Items

Branching and Extend Branching, which collectively account for 90.7% of IPSA's total

processing time, are not suitable for GPU-based processing in their current form. These sections

average three to five instructions per if statement and contain multiple sections of up to three

nested for loops.

The sections in Figure 5.3.1b that are labeled in green colors are the only sections of

IPSA that are applicable for GPU-based processing in their current form. These sections

63

collectively account for only 9.3% of the algorithm's total processing time. Thus, if the team

were able to completely eliminate this processing time, the algorithm would only be 1.1 times

faster than the CPU-based IPSA. Logically, the team chose to translate Compute D1, which is

shorthand for the Compute_RMSD_D1 function, to the GPU.

5.3.2 The Compute_RMSD_D1 Function
As described in Section 3.3.4.2, the Compute_RMSD_D1 function includes calculating

eigenvalues and eigenvectors. Due to project constraints, the team hard-coded the eigenvalues

and eigenvectors into the prototype. The team eliminated the eigenvalue and eigenvector

processing time from the CPU-based timing result by timing the calculation of thousands of

eigenvalues and eigenvectors and dividing by the number of sets of eigenvalues computed. After

determining the average time for computing one comparison's eigenvalues and eigenvectors, the

team multiplied the average time by the number of comparisons in the actual test and subtracted

the result from the CPU-based processing time.

The team performed the Compute_RMSD_D1 function tests on Computer 2. Due to

limitations of Computer 2's video card, the largest texture that the computation could use was

1280-by-1280. The GPU-based Compute_RMSD_D1 function can compute 102,400 chain

comparisons simultaneously. The GPU-based function is 9.828 times faster than the CPU-based

function. Not including any potential overhead from connecting the GPU-based function with

IPSA as detailed in Section 3.3.2, the GPU-based IPSA algorithm is 1.076 times faster than

IPSA and cuts 84 seconds off the total processing time.

64

6 Summary and Conclusions
The team successfully completed the goals and objectives in Section 1.3. The Cg

programs described in Section 4.2 and Section 5.2 fulfill the requirements of the project's first

phase. The map program described in Section 4.1 and Section 5.1, and the Map-Reduce program

included in the report's documentation meet the requirements of the second phase. The team

completed the third phase by developing and using the profiling program described in sections

3.3.1, 3.4.1, 4.3.1, and 5.3.1. The team completed the final phase by developing the GPU-based

Compute_RMSD_D1 function prototype described in sections 3.3.4, 3.4.3, 4.3.3, and 5.3.2 and

by developing the IPSA-GPU interaction prototype described in sections 3.3.2, 3.4.2, and 4.3.2.

The team successfully overcame the project's many constraints, including the team

members' complete lack of experience with GPU programming, the significant human factor

constraints described in Section 2.1.3.2, and the sheer difficulty of the problem. The team has

proven that GPU-based computation can significantly improve the average response time of

algorithms that are parallelizable. The team's GPU-based Compute_RMSD_D1 function could

potentially eliminate 84 seconds of IPSA's total processing time. The team has also shown that

further GPU-based improvements of IPSA will require a redesign of the algorithm that reduces

branching and extended nested looping.

65

7 Future Work
The GPU performance gain is limited by the small percentage of total processing time for

IPSA's parallelizable code sections (Section 5.3.1), the use of only three of the four floats in each

pixel on the GPU (Section 3.2.2), and the unused float4's from the texture packing strategy

(Section 3.2.4). In order to overcome the two limitations pertaining to float4 conversion, the

GPU-based algorithm would need to be completely redesigned. This redesign would most likely

provide a performance gain that is not worth the amount of time required to complete the

redesign. The performance gain would also be insignificant because the Compute_RMSD_D1

function is only 7% of IPSA's total processing time.

Future development can only achieve worthwhile performance gains through redesigning

the IPSA algorithm in a way that increases the number of parallelizable sections. IPSA's current

design includes an abundance of branching and extensive nested looping. Improvements would

also be easier to develop if the original IPSA algorithm was thoroughly documented, and if the

algorithm and all of its supporting data structures were rewritten in C++.

Aside from potential performance gains, integrating the GPU-based program into the

IPSA algorithm requires that the calculation of eigenvalues and eigenvectors be ported to the

GPU. This process, which is long and tedious, could be a semester or yearlong project in itself.

Additionally, the team did not study whether the GPU's single precision floating point numbers

will affect the accuracy of IPSA, which currently uses double precision floating point numbers.

Eventually, video cards will support double precision floating point numbers. In the meantime,

IPSA must accept the single precision limitation in order to reduce the average response time.

66

8 References
[1] Chi, P. and Shyu, C., “Efficient SCOP fold classification and retrieval using Index-based

Protein Substructure Alignments (IPSA),” Submitted to Intelligent Systems for Molecular

Biology (ISMB), 2007.

[2] Chi, P.; Scott, G.; Shyu, C., “A fast protein structure retrieval system using image-based

distance matrices and multidimensional index,” in Int J. Softw. Eng. Know., Special Issue

on Software and Knowledge Engineering Support in Bioinformatics, 2005, pp. 527-545.

[3] Strom, D., "5 Disruptive Technologies To Watch In 2007," Information Week, Jan. 2007.

Available:

http://www.informationweek.com/internet/showArticle.jhtml?articleID=196800208

[4] Owens, J.; et al, "A Survey of General-Purpose Computation on Graphics Hardware,"

Computer Graphics Forum, Vol. 26 No. 1, pp. 80-113, Mar. 2007.

[5] “Yearly Growth of Total Structures.” RCSB Protein Data Bank, [Online Document], 2007

Feb 13, [cited 2007 Feb 18], Available HTTP: http://www.pdb.org/

[6] Luebke, D.; Humphreys, G., “How GPUs Work,” Computer, Vol. 40, No. 2, pp. 96-200,

Feb. 2007.

[7] Treseler, Mary, Ed., The Redbook. Addison Wesley Publishing Co., Jan 1997.

[8] "DirectX Developer Center," Microsoft. Available: http://msdn.microsoft.com/directx/

[9] Mark, W.; et al, “Cg: a system for programming graphics hardware in a C-like language,” in

ACM SIGRAPH, 2003, pp 896-907.

[10] "RapidMind," RapidMind. Available: http://www.rapidmind.net

[11] "PeakStream," PeakStream. Available: http://www.peakstreaminc.com

[12] "NVIDIA CUDA," NVIDIA. Available: http://developer.nvidia.com/object/cuda.html

[13] "Sh: A high-level metaprogramming language for GPUs," Sh. Available: http://libsh.org

67

[14] "Shallows: Making GPGPU programming fast and easy," Shallows. Available:

http://shallows.sourceforge.net

[15] Tarditi, D.; Puri, S.; and Oglesby, J. “Accelerator: using data parallelism to program GPUs

for general-purpose uses,” Proceedings of the 12th International Conference on

Architectural Support for Programming Languages and Operating Systems, pp. 325-335,

Oct. 21 - 25 2006.

[16] Buck, I.; et al. “Brook for GPUs: stream computing on graphics hardware,” ACM

SIGGRAPH 2004 Papers, pp. 777-786, Aug. 8 - 12 2004.

[17] Govindaraju, N.; Larsen S.; Gray, J.; and Manocha, D., “A Memory Model for Scientific

Algorithms on Graphics Processors,” in Proceedings of the 2006 ACM/IEEE conference

on Supercomputing, 2006, no. 89.

[18] Ikeda, T.; Ino, F.; Hagihara, K., "A code motion technique for accelerating general-purpose

computation on the GPU," 2006 Parallel and Distributed Processing Symposium, 10 pp,

Apr. 25-29 2006.

[19] Fan, Z.; Qiu, F.; Kaufman, A.; and Yoakum-Stover, S., “GPU Cluster for High Performance

Computing,” Supercomputing. Proceedings of the 2004 ACM/IEEE Conference on

Supercomputing, pp. 47-59, Nov. 2004.

[20] "CIRL GPU," Robert Luke and Derek Anderson. Available: http://cirl.missouri.edu/gpu/

[21] "GPGPU Tutorials," Dominik Göddeke. Available:

http://www.mathematik.uni-dortmund.de/~goeddeke/gpgpu/

[22] "GeForce 8800 GTX," Pricewatch.com. Available:

http://www.pricewatch.com/video_cards/geforce_8800gtx_768mb.htm

[23] "Extreme Programming: A Gentle Introduction," ExtremeProgramming.org. Available:

http://www.extremeprogramming.org/map/project.html

68

	1 Problem Definition
	1.1 Introduction
	1.1.1 Needs Analysis
	1.1.2 Market Analysis

	1.2 Technical Background
	1.2.1 Index-based Protein Substructure Alignments
	1.2.2 General GPGPU Techniques
	1.2.3 Current GPGPU Technologies
	1.2.3.1 Accelerator Performance
	1.2.3.2 BrookGPU Performance
	1.2.3.3 Cg

	1.2.4 GPGPU Performance Techniques
	1.2.4.1 Cache-Efficient Memory Models
	1.2.4.2 Vertex Processor Code Motion Technique
	1.2.4.3 GPU Clustering

	1.3 Goals and Objectives
	1.4 Overall Approach
	1.4.1 System Diagram
	1.4.2 Advantages and Disadvantages
	1.4.3 Costs

	2 Requirements Analysis
	2.1 System Requirements and Constraints
	2.1.1 Operating Environment
	2.1.2 Market Users and Characteristics
	2.1.3 Environmental Constraints
	2.1.3.1 Quality and Reliability
	2.1.3.2 Human Factors

	2.1.4 System Components
	2.1.5 Software Interfaces and Libraries
	2.1.6 Communication Interfaces
	2.1.7 Hardware Interfaces
	2.1.8 System Maintenance

	2.2 Performance Requirements
	2.3 Resource Requirements
	2.3.1 Time
	2.3.2 Resources
	2.3.3 Facilities
	2.3.4 Budget

	2.4 Evaluation Metrics

	3 Design Specification
	3.1 Hardware
	3.2 Data Requirements
	3.2.1 IPSA Data Sources
	3.2.2 Translation to a GPU Datatype
	3.2.3 Matrix Translations
	3.2.4 Protein Chain Translations

	3.3 Software
	3.3.1 IPSA Profiler
	3.3.1.1 Class Diagram
	3.3.1.2 Data Flow Diagram

	3.3.2 Java-C++ Interaction
	3.3.2.1 High-Level Process Diagram

	3.3.3 Alternative Java-C++ Interaction
	3.3.3.1 Alternative High-Level Process Diagram
	3.3.3.2 Advantages and Disadvantages

	3.3.4 The Compute_RMSD_D1 Function
	3.3.4.1 Algorithm
	3.3.4.2 Eigenvalues and Eigenvectors

	3.4 Testing Methods
	3.4.1 IPSA Profiler
	3.4.2 Java-C++ Interaction
	3.4.3 The Compute_RMSD_D1 Function

	3.5 Scheduling and Task Assignments

	4 System Implementation
	4.1 GPGPU Limitations Demonstration
	4.1.1 2D Arrays versus 1D Arrays

	4.2 GPGPU Potential using Cg
	4.2.1 Mathematical Computation
	4.2.2 Average Random Walk Distance

	4.3 IPSA
	4.3.1 IPSA Profiler
	4.3.2 Java-C++ Interaction
	4.3.3 The Compute_RMSD_D1 Function
	4.3.3.1 CPU Arrays to GPU Arrays
	4.3.3.2 Code Translation

	5 System Performance and Evaluation
	5.1 GPGPU Limitation Demonstrations
	5.1.1 2D Arrays versus 1D Arrays

	5.2 GPGPU Potential using Cg
	5.2.1 Mathematical Computation
	5.2.2 Average Random Walk Distance

	5.3 IPSA
	5.3.1 IPSA Profiler
	5.3.2 The Compute_RMSD_D1 Function

	6 Summary and Conclusions
	7 Future Work
	8 References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

