CS227: Assignment 1

The first assignment involves implementing and eathg propositional satisfiability
algorithms, and writing up a report on your experiments.

Algorithms: Compare the relative performance of GSAT, HSATAGSvith random walk, and
WalkSat. In addition, compare HSAT with and witheaore caching. You are free to augment
these algorithms with other algorithms (e.g., DRl DLM-based algorithms) or variants of
your own (though this is not required by the assignt).

Problems for evaluation: Programs must be evaluated on the SAT problemdadeifor
download from the Coursework site. All these pratdeare known to be satisfiable. We have
included random 3-SAT problems with 50, 100, 1510,250, 300, 400, 500, 600, 700 and 800
variables. There are 10 instances generated wjhyaics-inspired spin-glass model that are
hard for many modern SAT solvers. In addition, ¢here 40 SAT problems generated by
converting other problems into SAT (e.g., graplodal, logistics, blocks world planning, latin
square). Give your program a maximum of 10 mintesolve each problem instance. The file
syntax is the DIMACS CNF format included below.

Make sure you meter all relevant parameters (eug.time, number of flips). Results should
include at least the number of problems solved,iametime, and flips for each variable setting.

Report: Your report should contain descriptions of theoalpms you are evaluating, including
discussions of any optimizations you may have usednake the algorithms run fast. In
particular:
» Describe the details of all your caching algorith(fisr scores, unsatisfied clauses,
occurrence in unsatisfied clauses, etc.).
The report should contain the results of running #xperiments and a discussion of your
conclusions.

Submission: The report can be submitted electronically, irssjeor directly to the TA. Submit
source code electronically as a single .tgz or figpthat unpacks into its own directory. Please
include a small README file describing how to budéahd run your code. Clearly identify all
members of the group both on the report, and inefleetronic submission. Send electronic
submissions t@s227-submit@lists.stanford.edu

Assignments will be graded on the description of #dgorithms, the descriptions of the
optimizations used, the raw results, and your amalyf the results.

Assignments may be done in groups of 2-3 studerf®u may choose any programming
language for implementation purposes, though wemeatend either C or C++ for maximum
efficiency. Assignments are due by noon28mApril.



DIMACS CNF format

A satisfiability problem in conjunctive normal forgonsists of a conjunction of a number of
clauses, where is clause is a disjunction of a murobvariables or their negations. If we Xet
represent variables that can assume only the vafuesor falsg then a sample formula in
conjunctive normal form would be

(%, or X3 or (notXy)) and &,) and &, or (notxs))

Given a set of clausd3,, G,,..., G, on the variableg;, %,..., %, the satisfiability problem is to
determine if the formula

C; andC, and... andC,,

is satisfiable. That is, is there an assighmemnaties to the variables so that the above formula
evaluates torue. Clearly, this requires that eaChevaluate tdrue.

To represent an instance of such problems, weanghte an input file that contains all of the
information needed to define a satisfiability peyl This file will be an ASCII file consisting
of a two major sections: the preamble and theselau

Preamblee The preamble contains information about the imsta This information is
contained in lines. Each line begins with a sirgiaracter (followed by a space) that determines
the type of line. These types are as follows:

Comments. Comment lines give human-readable information alibet file and are
ignored by programs. Comment lines appear at gggnhing of the preamble. Each
comment line begins with a lower-case character

¢ This is an example of a comment line.

Problem line. There is one problem line per input file. The peolb line must appear
before any node or arc descriptor lines. For astances, the problem line has the
following format.

p FORMAT VARIABLES CLAUSES

The lower-case charactprsignifies that this is the problem line. TRORMATfield
allows programs to determine the format that wil dxpected, and should contain the
word “cnf '. TheVARIABLESield contains an integer value specifyimghe number
of variables in the instance. TREAUSESield contains an integer value specifyimg
the number of clauses in the instance. This linestnaccur as the last line of the
preamble.

Clauses: The clauses appear immediately after the problam liThe variables are assumed to
be numbered from 1 up to It is not necessary that every variable appeaniinstance. Each
clause will be represented by a sequence of numbkach separated by a space, a tab, or a
newline character. The non-negated version of reavi@ i is represented by, the negated
version is represented by —



Each clause is terminated by the value 0. Unliemyrformats that represent the end of a clause
by a new-line character, this format allows clausese on multiple lines.

Example: Using the example
(%, or x3 or (notxy)) and &,) and & or (notxs))
a possible input file would be

¢ Example CNF format file
c

pcnfd3

13-40

402

-3



