
 1

CS227: Assignment 1

The first assignment involves implementing and evaluating propositional satisfiability
algorithms, and writing up a report on your experiments.

Algorithms: Compare the relative performance of GSAT, HSAT, GSAT with random walk, and
WalkSat. In addition, compare HSAT with and without score caching. You are free to augment
these algorithms with other algorithms (e.g., DPLL or DLM-based algorithms) or variants of
your own (though this is not required by the assignment).

Problems for evaluation: Programs must be evaluated on the SAT problems available for
download from the Coursework site. All these problems are known to be satisfiable. We have
included random 3-SAT problems with 50, 100, 150, 200, 250, 300, 400, 500, 600, 700 and 800
variables. There are 10 instances generated with a physics-inspired spin-glass model that are
hard for many modern SAT solvers. In addition, there are 40 SAT problems generated by
converting other problems into SAT (e.g., graph coloring, logistics, blocks world planning, latin
square). Give your program a maximum of 10 minutes to solve each problem instance. The file
syntax is the DIMACS CNF format included below.

Make sure you meter all relevant parameters (e.g., run time, number of flips). Results should
include at least the number of problems solved, median time, and flips for each variable setting.

Report: Your report should contain descriptions of the algorithms you are evaluating, including
discussions of any optimizations you may have used to make the algorithms run fast. In
particular:

• Describe the details of all your caching algorithms (for scores, unsatisfied clauses,
occurrence in unsatisfied clauses, etc.).

The report should contain the results of running the experiments and a discussion of your
conclusions.

Submission: The report can be submitted electronically, in class, or directly to the TA. Submit
source code electronically as a single .tgz or .zip file that unpacks into its own directory. Please
include a small README file describing how to build and run your code. Clearly identify all
members of the group both on the report, and in the electronic submission. Send electronic
submissions to cs227-submit@lists.stanford.edu.

Assignments will be graded on the description of the algorithms, the descriptions of the
optimizations used, the raw results, and your analysis of the results.

Assignments may be done in groups of 2-3 students. You may choose any programming
language for implementation purposes, though we recommend either C or C++ for maximum
efficiency. Assignments are due by noon on 23 April.

 2

DIMACS CNF format
A satisfiability problem in conjunctive normal form consists of a conjunction of a number of
clauses, where is clause is a disjunction of a number of variables or their negations. If we let xi
represent variables that can assume only the values true or false, then a sample formula in
conjunctive normal form would be

(x1 or x3 or (not x4)) and (x4) and (x2 or (not x3))

Given a set of clauses C1, C2,…, Cm on the variables x1, x2,…, xn, the satisfiability problem is to
determine if the formula

C1 and C2 and … and Cm

is satisfiable. That is, is there an assignment of values to the variables so that the above formula
evaluates to true. Clearly, this requires that each Cj evaluate to true.

To represent an instance of such problems, we will create an input file that contains all of the
information needed to define a satisfiability problem. This file will be an ASCII file consisting
of a two major sections: the preamble and the clauses.

Preamble: The preamble contains information about the instance. This information is
contained in lines. Each line begins with a single character (followed by a space) that determines
the type of line. These types are as follows:

Comments. Comment lines give human-readable information about the file and are
ignored by programs. Comment lines appear at the beginning of the preamble. Each
comment line begins with a lower-case character c .

c This is an example of a comment line.

Problem line. There is one problem line per input file. The problem line must appear
before any node or arc descriptor lines. For cnf instances, the problem line has the
following format.

p FORMAT VARIABLES CLAUSES

The lower-case character p signifies that this is the problem line. The FORMAT field
allows programs to determine the format that will be expected, and should contain the
word ` c̀nf' '. The VARIABLES field contains an integer value specifying n, the number
of variables in the instance. The CLAUSES field contains an integer value specifying m,
the number of clauses in the instance. This line must occur as the last line of the
preamble.

Clauses: The clauses appear immediately after the problem line. The variables are assumed to
be numbered from 1 up to n. It is not necessary that every variable appear in an instance. Each
clause will be represented by a sequence of numbers, each separated by a space, a tab, or a
newline character. The non-negated version of a variable i is represented by i; the negated
version is represented by – i.

 3

Each clause is terminated by the value 0. Unlike many formats that represent the end of a clause
by a new-line character, this format allows clauses to be on multiple lines.

Example: Using the example

(x1 or x3 or (not x4)) and (x4) and (x2 or (not x3))

a possible input file would be

c Example CNF format file
c
p cnf 4 3
1 3 -4 0
4 0 2
-3

