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1 Introduction 
Planning algorithms are an extremely active 
area of AI research. They have been applied to 
solving a variety of complex real-world prob-
lems, from managing cargo at ports to running 
Mars Rovers. On the academic side, their de-
velopment has been motivated by high-profile 
planning competitions, notably IPC.  

Given the complexity of the problem of 
building a general planner, there is a plethora 
of approaches. Indeed, there are both back-
ward and forward-chaining methods, and suc-
cess has been had by more or less directly 
converting the problem to SAT problems or 
CSPs. In this paper we consider approaches 
which utilize the "planning graph" developed 
by the GraphPlan algorithm. FF is one of the 
most successful planners of late; it performs 
forward-chaining search oriented by a heuris-
tic based on a "relaxed" version of the plan-
ning graph (in which some constraints are not 
considered).  

In this paper we present our implementa-
tion of Identidem, an extension to FF. Identi-
dem utilizes localized restarts to cut down on 
the time FF spends searching for ways to es-
cape from local minima. It does this by per-
forming restarts to the start point of plateaux / 
saddle points after judiciously chosen time-out 
intervals, and also global restarts if necessary. 

FF, like all the other planners studied here, 
uses for input the planning domain description 
language PDDL. In this paper we present a 
new planning domain entitled SuperBarman, 
complete with a set of sample problem files, 
written in PDDL 2.1. We evaluate the per-

formance of our Indentidem implementation 
and a selection of publicly available planners 
(FF, SAPA and LPG) on this planning do-
main. 

2 Identidem Algorithm 
Identidem is a local search algorithm for for-
ward-chain planning that builds upon FF. The 
algorithm uses FF's relaxed planning graph 
heuristic as well as YAHSP's lookahead algo-
rithm for adding an additional child to each 
state, although we do not implement the loo-
kahead algorithm in this project. The key ex-
tension of FF that Identidem implements is the 
use of random restarts. 

Identidem replaces FF's enforced hill 
climbing search, which uses breadth first 
search to escape local minima, with a probing 
local search. The algorithm attempts a certain 
number of probes with increasing depth 
bounds. After failing to find a better state 
given the current depth bound, the depth 
bound is doubled. This process continues for a 
predefined number of iterations. The number 
of iterations, the number of probes with a 
given depth bound, and the initial depth bound 
are all parameters. We used the same parame-
ter values as in [1], which has 5 iterations, 60 
probes at a given depth, and an initial depth 
bound of 10. 

Upon failure to escape the local minimum 
after the specified number of iterations, the al-
gorithm restarts from the initial state. Identi-
dem also introduces an additional method for 
triggering a restart called fail-bounded re-
starts. Fail-bounded restarts are meant to re-
start the search when slow but steady progress 
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is being made (in the hopes that a location in 
the search space with faster progress exists). 
An additional parameter, called the fail bound, 
indicates the amount of times a probe can fail 
to escape local minima before forcing a re-
start. Every time that a probe fails to find a 
state with a strictly better heuristic value a fail 
counter is incremented. Whenever the fail 
counter reaches the fail bound, a restart is 
forced. We use the same fail bound sequence 
as in [1], which starts at 32 and doubles every 
three restarts. Therefore the fail bound se-
quence is 32, 32, 32, 64, 64, 64, etc. 

Identidem also improves upon FF by in-
corporating neighborhood sampling with rou-
lette wheel selection. When at a given state, 
the algorithm takes all helpful actions as iden-
tified by FF and places each into one bucket in 
a neighborhood bucket grid. The neighbor-
hood bucket grid is a two-dimensional array of 
buckets where the row indicates the action 
type and the column indicates the number of 
parameters that the action has in common with 
the parent action (with the parameters being 
preconditions, adds, and deletes). 

After placing each potential child action in 
a bucket, the algorithm creates a neighborhood 
whose size is pre-defined by the neighborhood 
size parameter. Our implementation uses the 
same neighborhood size parameter as [1], 
which is 3. To construct the neighborhood, 
one continually randomly picks a nonempty 
bucket and then randomly selects one of the 
actions in the bucket to include in the 
neighborhood. 

Identidem also includes an additional twist 
in that for the second half of the probe itera-
tions non-helpful actions are also included in 
the neighborhood sampling process. This al-
lows the planner to solve problems in which 
incorporating non-helpful actions is essential 
to solving the problem. We implemented this 
feature as a command-line option so that we 
could evaluate its effect on performance. 

Once a neighborhood is created, each ac-
tion n in the neighborhood is given a roulette 
wheel segment value as follows: 
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where hn is the heuristic value of action n and 
β is the heuristic bias parameter. We follow 
[1] in initially setting β to 1.5 and linearly de-
creasing its value to 0.5 as each probe within a 
given depth bound is attempted. The probabil-
ity of an action in the neighborhood being 
chosen is determined by normalizing across 
all heuristic bias parameters. 

3 Indentidem Optimizations 
Caching and other optimizations are essential 
for creating usable planners. Like our previous 
projects, we developed our algorithms with ef-
ficiency in mind. Our optimizations include 
managing our own memory (including intelli-
gent allocation), quick lookup structures for 
action parameters, caching of "parameters in 
common" values, and efficient neighborhood 
creation. 

3.1 Memory Management 
Unfortunately, since we extended FF, which is 
written in ANSI C, we did not continue our 
C++ STL Vector saga from previous projects. 
Staying in the spirit of FF's coding practices 
each function manages its own memory struc-
tures. These memory structures are allocated 
during the first call to the function. With the 
exception of the neighborhood buckets, we 
pre-allocate all memory in accordance with its 
maximum possible need during the first call to 
each function. Thus all stacks and other struc-
tures never need to be resized because they are 
always allocated the maximum amount of 
memory that they will need. 

We do not pre-allocate all neighborhood 
buckets because the neighborhood bucket grid 
is a two-dimensional array of buckets that has 
a row for each action type and columns from 
zero to the largest number of parameters of 
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any given action. Each bucket within this grid 
needs to potentially be able to contain all ac-
tions except the action specified by the 
bucket's row coordinate in the grid. Indeed on 
many problems this massive structure requires 
too much memory to allocate outright during 
the first call to the function. 

To mitigate this issue, we made two modi-
fications. First, we turned the grid into a 
ragged two-dimensional array (rows have a 
variable number of columns). Since the col-
umn indices indicate the number of parame-
ters the action (indicated by the row) has in 
common with the previous action applied, we 
only need to have as many columns as the ac-
tion type has parameters (plus one for the zero 
case). 

Our second modification is that we only 
allocate a bucket's memory the first time that 
we need to place an action in the bucket. Dur-
ing the first call to the function we allocate the 
grid of bucket pointers and set all of the point-
ers to null. Before inserting an action into a 
bucket, we check to see if the bucket has been 
allocated. If it has not been allocated, then we 
allocate the memory. This simple modification 
has a large impact on memory usage, as most 
buckets in the grid are actually never needed. 

3.2 Action Parameters 
Identidem involves calculating the number of 
parameters each child action has in common 
with the previous action applied. FF's data 
structures are not conducive for this task. FF 
splits an action's parameters (its preconditions, 
adds, and deletes) into three separate arrays 
with each array containing integers starting at 
zero. These arrays are not sorted in any way. 
Thus calculating the number of parameters in 
common between two actions is an O(n2) op-
eration, where n is the number of parameters 
in an action. 

We reduce this complexity to an O(n) op-
eration by preprocessing the actions before en-
tering the search loop. For each action we cre-
ate an array of integers that contains all pa-

rameters. We change the values of adds and 
deletes by adding the number of preconditions 
possible to each add value and the number of 
preconditions possible plus the number of add 
values possible to each delete value. These 
numbers are available from FF's own preproc-
essing and do not require any additional work 
to calculate. 

After constructing each array of parame-
ters, we use quicksort to sort each array. Since 
the arrays are sorted, we are able to calculate 
the number of parameters in common between 
two actions in linear time. Of course, we are 
pushing the worst case O(n2) complexity onto 
the sorting procedure, but this sort is per-
formed once for each action whereas the O(n2) 
parameters in common calculation would be 
performed significantly more times during the 
search. 

3.3 Parameters in Common 
Caching 

For every child action that we consider for our 
neighborhood we must calculate the number 
of parameters the child action has in common 
with the parent action. This task is clearly an 
easy location for optimization, as the search 
process will undoubtedly run into the same 
parent-child pairs multiple times. To solve this 
issue, we cache all parameters in common cal-
culations. Thus after the first time an action 
pair occurs, we store the resulting value in an 
array. On subsequent occurrences of the same 
action pair we simply grab the pre-calculated 
value from the array. 

To investigate the success of this caching 
procedure, we recorded the amount of cache 
hits while running our planner on all of the 
IPC3 problems. As our results will show, this 
caching is effective. Even in problems where 
no restarts are required, such as the Rovers 
problems, the planner still experiences an av-
erage of 46 cache hits. On more difficult prob-
lems, such as DriverLog where our planner re-
starts an average of 1,109 times, the cache hit 
count is more than one million on average. 
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3.4 Efficient Neighborhood 
Creation 

The Identidem algorithm's neighborhood crea-
tion involves randomly sampling so many 
nonempty neighborhood buckets and then 
randomly choosing one action in the bucket 
and including it in the neighborhood. As dis-
cussed earlier, the neighborhood grid can be 
enormous for certain problem instances while 
most buckets are empty at any given point in 
time. Repeatedly randomly picking a bucket in 
the grid until one finds a nonempty bucket is 
clearly inefficient. 

To solve this problem we maintain a stack 
of bucket pointers that contain all of the non-
empty buckets. When sampling for the 
neighborhood, we can simply generate a ran-
dom integer and use the modulus operator 
with the integer and the number of nonempty 
buckets to select a nonempty bucket. We add 
buckets to the nonempty bucket stack when 
inserting an action into the bucket causes the 
bucket's size to increase to one. 

The nonempty bucket stack is simply an 
array of pointers with a size field indicating 
how many items are currently in the stack. 
This makes adding new items easy as we sim-
ply place the new item at the index indicated 
by the current stack size and then increment 
the stack size. Removing items is also delight-
fully simple. All we do is place the last bucket 
pointer in the array into the position of the 
pointer that we want to remove and then we 
decrement the stack size. 

 

4 Identidem Experimental 
Method 

Our experimental method is almost identical 
to our previous projects. We conducted all of 
our experiments on the Pod cluster. The Pod 
cluster contains Dell Precision 390s, each with 
a 2.4 GHz Core 2 Duo and 2 GB of RAM 
running Ubuntu 7.04. All results in Section 5 
are from running each planner on the IPC3 

planning problems using 5 different seeds for 
the random number generator. We used the 
seeds 1 through 5. We enforced a timeout of 
30 minutes for each problem. 

 

4.1 Naming Conventions 
In all results the first segment of characters 
indicates the problem type while the second 
indicates the problem number within the prob-
lem type. We present results for our standard 
algorithm that does not use non-helpful ac-
tions as well as results for including non-
helpful actions as described in Section 2. The 
results when using non-helpful actions always 
have an "N" appended to the name. For exam-
ple, "Depots-07-N" indicates the results for 
the seventh problem of the Depots problem 
type with our algorithm using non-helpful ac-
tions. When presenting aggregate results, we 
simply remove the number portion. Thus "Ze-
noTravel" indicates the aggregate results for 
the ZenoTravel problem type with our algo-
rithm not using non-helpful actions. 

 

4.2 Our Performance Metrics 
We track three metrics: Restart Count, Cache 
Hits, and Total Time. As the name suggests, 
Restart Count is the number of times that the 
algorithm restarts. Cache Hits is the number of 
cache hits for our parameters in common 
caching described in Section 3.3. Total Time 
is the time as reported by FF's timing func-
tionality. All times are in seconds and include 
all computation time, including parsing the 
file, all preprocessing, and search. 
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5 Identidem Results 
We include all our results for Identidem in the 
Annex. By way of introduction, our average 
success rates for each problem class, without 
non-helpful actions, are the following: 

 

Problem 
Type 

Attempt 
Count 

Success 
Count 

Success 
Rate 

Depots 110 104 0.945 
DriverLog 100 67 0.67 
FreeCell 100 86 0.86 
Rovers 100 100 1 
Satellite 100 100 1 
SuperBarman 25 23 0.92 
ZenoTravel 100 100 1 

 

Of course, these averages conceal the fact 
that the problem classes contain problems of 
greatly varying difficulty. However, they do 
illustrate that not all of the problem classes are 
created equal: the DriverLog problems in par-
ticular are very difficult for Identidem, 
whereas the Rovers problems are all solved. A 
look at the detailed results in the annex con-
firms this difficulty disparity (none of the 
Rovers problems take more than one second 
on average to solve, whereas a third of the 
DriverLog problems times out given the 30 
minute timeout). 

The main factor whose influence on per-
formance we wished to evaluate is the use of 
non-helpful actions. Looking at the average 
success rates for a selection of problem classes 
shows mixed results: 

 

Problem 
Type 

Attempt 
Count 

Success 
Count 

Success 
Rate 

Depots 110 104 0.945 
DepotsN 110 92 0.836 
DriverLog 100 67 0.67 
DriverLogN 100 84 0.84 
FreeCell 100 86 0.86 
FreeCellN 100 93 0.93 

 

For the DriverLog and FreeCell problem 
classes, use of non-helpful actions signifi-
cantly improves results (increasing average 
success rate by around 20% for DriverLog!). 
However, their use actually decreases success 

rate on Depots. We hypothesize that this is 
due to inherent characteristics of the problem 
categories. Looking at the breakdown of re-
sults on a per-problem basis (see Annex) 
somewhat confirms this; indeed, for Depots 
problems for example, non-helpful actions 
does consistently worse. However, in some 
cases the results seem chaotic with no general 
trend. This is the case for DriverLog: 

 

Problem 
Restart 

Count Cache Hits 
Total 
Time 

DriverLog-17 55 2292373.2 600.1 
DriverLog-17-N 13.2 417584.4 164.1 
DriverLog-18 19 468734 226.3 
DriverLog-18-N 11.8 97039.6 433.9 

 

On problem 17 non-helpful actions does 
considerably better, improving runtime by a 
factor of 5, but on problem 18 it is half as 
good as without non-helpful actions, even 
though we are within the same problem class. 
We suspect this is simply an artifact of the 
high variance of the Identidem algorithm, 
which we will examine further in the Super-
Barman results analysis later in the paper. We 
believe that for this reason the average results 
over each problem class actually convey per-
formance trends better than looking at indi-
vidual problems. 

Another factor whose importance is shown 
in our results is the role of our parameter cach-
ing mechanism. On simple problems the num-
ber of cache hits is negligible, but for the 
hardest problems in each set the numbers be-
come significant. Here are the average results 
for FreeCell:  

 

Problem 
Restart 

Count 
Cache 

Hits 
Total 
Time 

FreeCell-14-N 0 199.6 1.06 
FreeCell-15-N 4.2 13275 28.60 
FreeCell-16-N 3.6 6877.4 16.26 
FreeCell-17-N 1.2 1311.2 6.03 
FreeCell-18-N 19.2 415158.2 1244.61 
FreeCell-19-N 18.8 85729.8 1353.58 
FreeCell-20-N 18.6 155572.8 1532.97 
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Cache hit numbers are on the order of one 
million for some cases, which translates to a 
significant performance gain. However, the 
number of cache hits is not linear relative to 
runtime: FreeCell-18 has slightly shorter run-
time than FreeCell-19, but has an order of 
magnitude more cache hits. These variations 
may however simply be due to the high vari-
ance of our algorithms. 

6 SuperBarman 
Planning Domain 

6.1 Problem Description 
In our SuperBarman class of problems, we 
present a problem faced by everyone at some 
point in their life: how to run a bar efficiently. 
The planner must come up with a sequence of 
actions for a barman which satisfies all of the 
bar's patrons. The barman has a set of bottles 
of beverages on the rack behind him, and a set 
of (initially empty) glasses on the bar counter 
in front of him. He can hold as many bottles at 
a time as he has hands, and can pour liquid 
from any bottle he is holding into any of the 
glasses on the counter. A cocktail is a mix of 
three liquids, added in a specified ordering to 
the glass.1 Once a cocktail is ready (I.e. it con-
tains the mix of liquids that a certain customer 
wants), he can give it to the customer. More 
formally, the specification of the problem 
class is the following: 
 Types: 

 liquid (which represents a specific 
alcohol, juice or accompaniment) 

 bottle (there is one bottle on the rack 
for each kind of liquid) 

 glass 
 customer (we assume without loss of 

generality that each customer wants 

                                                
1 In our original problem class, called simply Barman, 
the order of addition of the liquids to the glass did not 
matter. However, introducing the required ordering 
both makes the problem more demanding (as otherwise 
each bottle only needs to be picked up once), and more 
realistic. 

one specific drink) 
 hand (our protagonist, like any self-

respecting barman, is ambidextrous; 
unlike most barmen, he can have as 
many hands as we wish) 

 Predicates: 
 bottleContains ?b - bottle ?l – liquid : 

"The bottle b contains the liquid l" 
 onRack ?b – bottle : 

"The bottle b is currently on the rack" 
 onBar ?g – glass : "The glass g is 

currently on the bar counter" 
 pouredInLast ?l - liquid ?g – glass : 

"l was the last liquid poured into glass g" 
 pouredInAfter ?lafter ?lbefore - liquid 

?g – glass : "lafter was poured into the 
glass g just after the liquid lbefore" 

 holding ?b - bottle ?h – hand : "The barman 
is holding the bottle b in his hand h" 

 handFree ?h – hand : "The barman's 
hand h is not holding anything" 

 wants ?c - customer ?l1 ?l2 ?l3 ?l4 – 
liquid : "Customer c wants a cocktail 
made by putting into a glass first l4, 
then l3, then l2, then l1" 

 satisfied ?c – customer : "Customer c 
has been given his drink and is 
therefore satisfied" 

 Actions: 
 pickup : "The barman picks up bottle 

b from the rack with his hand h" 
 putdown : "The barman puts the bottle 

b, which he was holding in his hand h 
back on the rack" 

 pour : "The barman pours the liquid 
lnew from the bottle b, which he is 
holding in his hand h, into the glass g, 
into which he had previously poured 
the liquid lbefore" 

 give : "The barman gives customer c 
the glass g which contains the cocktail 
made up of l4, l3, l2, l1, as specified 
by the customer"2 

                                                
2 Note that giving a drink to a customer does not require 
the use of a hand, as the barman can simply visually in-
dicate the glass on the counter to the customer. 
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All five instances of the problem have some 
common points in their objects, initial state, 
and goals: 
 Objects: 

 There is one "fake" liquid, called 
emptyL, which all glasses initially 
"contain" 

 There are as many bottles as there are 
liquids (with the exception of 
emptyL) 

 There are as many glasses as there are 
customers 

 Initial state: 
 Each liquid is contained by one bottle 

(with the exception of emptyL) 
 All bottles are on the rack 
 All glasses are on the bar 
 All glasses are empty, i.e. such that: 

(pouredInLast emptyL glass_i) 
 All hands are free 
 Each customer wants one specific 

cocktail, and the variable l4 is always 
emptyL.  

 Goals: 
 The goals are always that every 

customer be satisfied 
 
The different problems vary in the number of 
liquids/bottles, the number of glasses/custom-
ers, the number of hands the barman has, and 
the composition of the cocktails wanted by the 
customers. To summarize the five problems: 
 SuperBarman-1 is the most basic form, 

with just one customer and one hand.  
 SuperBarman-2 has two customers 

wanting the same cocktail, and so tests 
whether the planner can avoid picking up 
and putting down each bottle multiple 
times. 

 SuperBarman-3 has three customers, 
who want cocktails designed such that 
each bottle only has to be picked up 
once, if the planner finds an appropriate 
sequencing of drinks (I.e. ice, then 
martini, then vodka, then orange juice). 

 SuperBarman-4 has 6 liquids, 6 glasses, 

2 hands, and randomly generated 
cocktails (the cocktail specifications 
were generated from the digits of Pi). 

 SuperBarman-5 has 10 liquids, 10 
glasses, 4 hands, and randomly generated 
cocktails. 

6.2 Motivation 
We designed the SuperBarman problem class 
such that it is easy to find a primitive solution, 
but hard to find a solution with a short plan 
length. Indeed, there is an obvious general so-
lution to these problems: just satisfy the first 
customer, then the second customer, etc.; for a 
given customer, just make the cocktail by 
picking up the bottle for the first ingredient, 
pour it in the glass, put the bottle down, and 
continue for the two other ingredients. This 
obviously provides a plan which is linear in 
the number of customers, but this primitive 
method clearly leads to inefficient plans, as 
with a more sophisticated approach one can 
decrease the number of pick-ups and put-
downs of bottles required to make all of the 
cocktails, to decrease plan length. The pres-
ence of multiple hands further complicates 
things. 

6.3 Planner Performance 
For comparison purposes, we evaluated the 
performance of four different planners on our 
SuperBarman problem set: FF, SAPA, LPG, 
and our implementation of Indentidem. SAPA 
is a Forward Chaining Heuristic Metric Tem-
poral Planner. Like other algorithms consid-
ered here, it uses a planning graph-based ap-
proach, and uses heuristics which are designed 
to take into account both cost and makespan 
(see [2]).  

LPG is a popular planner which performs 
a WalkSAT-inspired local search using heuris-
tics based on a parameterized objective func-
tion (see [3]). In the following results we ran 
the publicly available implementation of LPG 
in two different modes: "speed", which mini-
mizes runtime, and "quality", which optimizes 
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plan quality (I.e. minimizes the cost of the 
plan) at the cost of longer runtimes. We refer 
to these two modes as LPG-speed and LPG-
quality, respectively. 

For the purposes of comparison, we 
graphed runtime and the final plan's number 
of actions for each planner. As LPG generated 
plans with parallel actions, we also graphed 
total plan length, but this is not a fair point of 
comparison as our other planners do not do 
this. All results were obtained on an Athlon 
X2 system with 2GB of RAM running Kub-
untu. We ran Identidem with Algorithm 3 and 
non-helpful actions. 

 

  P1 P2 P3 P4 P5 
FF 0 0 0.01 0.18 2.37 
SAPA 0.05 * 3.04 * * 
LPG-quality 0.26 0.26 0.26 10.26 177 
LPG-speed 0 0.01 0.17 0.19 7.33 
Identidem (avg) 0 0 0.06 102 * 

Runtime results (seconds) 
 

  P1 P2 P3 P4 P5 
FF 9 19 26 46 76 
SAPA 9 * 20 * * 
LPG-quality 9 13 23 38 58 
LPG-speed 9 15 23 65 72 
Identidem (avg) 14 18.8 34.4 76.2 * 

Plan size (number of actions) 
 

Unfortunately SAPA gives very poor per-
formance on the SuperBarman problems, fail-
ing on problems 2, 4 and 5 (the *'s indicate 
timeouts or failure to finish due to out-of-
memory errors, which is the case for SAPA). 
It is unclear why it fails so badly, but the fact 
that it generates a valid plan for problems 1 
and 3 in a reasonable amount of time seems to 
indicate that it is being used properly. It is no-
table however, that SAPA provides the short-
est plan length on problem 3 (20 actions as 
opposed to 23 for LPG). Problem 3 was de-
signed to test the ability of the planner to 
properly sequence the bottle pick-ups in order 
to minimize plan length, and SAPA achieves 
this when it works. 

FF is by far the best performer in terms of 
runtime. However, it also generates longer 
plans than LPG (or SAPA on problem 3). This 

is surprising, as the enforced hill-climbing 
method employed by FF is supposed to en-
courage shorter solutions according to the 
proponents of FF (see the Results section of 
[4]). It would therefore seem that the version 
of FF considered here is minimizing run-time 
at the cost of plan length. The excellent run-
time results are therefore somewhat deceptive: 
as we have already stated, each of the Super-
Barman problems can be resolved very simply 
with basic methods; the real work lies in find-
ing a short plan length. We would tend to con-
clude that the SuperBarman problem class is 
not well adapted to evaluating FF in this form. 

The most satisfactory performance with 
respect to plan length is given by LPG in 
"quality" mode. In all but one case (problem 
3), LPG-quality yields the shortest total num-
ber of actions. If one considers plan duration, 
with parallel actions, LPG does even better:  

 

  P1 P2 P3 P4 P5 
Plan size 9 13 23 38 58 
Plan duration 9 9 20 18 18 

Plan size and duration for LPG-quality 
 

plan duration is half the number of actions for 
problem 4, and a third for problem 5. We de-
duce that LPG's multi-parameter objective 
function is well adapted to the SuperBarman, 
allowing LPG to take advantage of natural 
parallelizability of the actions (indeed, for 
each SuperBarman problem, plan duration can 
be divided roughly by the number of hands if 
actions are parallelized).  

However, runtime performance of LPG-
quality does blow up on the harder problems; 
it seems that the algorithm does not scale well 
on this class of problem beyond 10 liquids and 
10 glasses. Furthermore, the short plan lengths 
come at a heavy price: LPG-quality is roughly 
two orders of magnitude slower than FF for all 
of the problems. This cost is however some-
what illusory, as the main point of SuperBar-
man was always to evaluate plan length rather 
than runtime. LPG-speed emerges as an awk-
ward compromise between FF and LPG-
quality. On problem 5, its runtime is 3 times 
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that of FF, for roughly the same plan length. 
On problem 4, its plan length is actually worse 
than FF's. 

The performance of our own implementa-
tion of Identidem is extremely disappointing 
on the SuperBarman class of problems. On the 
easy problems (1 through 3), there is little dis-
cernible difference with regular FF for aver-
age runtime. On problem 4 however, runtime 
becomes extremely poor, around 100 seconds 
on average, and on problem 5 all but one 
seeds do not finish. These average figures do 
not tell the whole story however; examination 
of the results for individual seeds reveals an 
enormous variance problem: 

 

  P1 P2 P3 P4 P5 
r1 0 0 0.01 0.69 * 
r2 0 0 0.04 217 36 
r3 0 0 0 226 1325 
r4 0 0 0.24 2.78 * 
r5 0 0 0.01 64 * 

Runtime results for Identidem 
with five different seeds (seconds) 

 

There is terrific variance in the runtime re-
sults: runtime varies by three orders of magni-
tude for problem 4, and the one of the two 
seeds which does finish on problem 5 takes 
only 36 seconds (which is considerably better 
than LPG-quality for example). Variance is 
somewhat to be expected given that the choice 
of seed influences paths Identidem's probes 
take, but it is shocking that it should be this 
strong since one of the points of restarts is to 
reduce variance.  

The plans generated by Identidem are poor 
in terms of plan length compared to the other 
planners, which is also disappointing. How-
ever, it is interesting to note that if one con-
siders each time the minimum result over the 
five seeds we considered, then the results look 
quite different: 
 
  P1 P2 P3 P4 P5 
LPG-quality 0.26 0.26 0.26 10.26 177 
LPG-speed 0 0.01 0.17 0.19 7.33 
Identidem (min) 0 0 0 0.69 36 

Runtime results (seconds) 
 

From this point of view Identidem appears 
competitive with LPG, with runtime in be-
tween LPG-speed and LPG-quality. This indi-
cates that a promising approach would be to 
use a random restart mechanism, restarting 
Identidem, restarting the algorithm with a new 
seed after a certain (growing) time window is 
filled. Alternatively one could run several 
threads of Identidem with different seeds on 
different processor cores, and take the first 
plan to finish. 
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