
[1]

CS 227 Programming Assignment 4:

Planning with Identidem

Todd Sullivan
todd.sullivan@cs.stanford.edu

Harry Robertson
harry.robertson@gmail.com

1 Introduction
Planning algorithms are an extremely active
area of AI research. They have been applied to
solving a variety of complex real-world prob-
lems, from managing cargo at ports to running
Mars Rovers. On the academic side, their de-
velopment has been motivated by high-profile
planning competitions, notably IPC.

Given the complexity of the problem of
building a general planner, there is a plethora
of approaches. Indeed, there are both back-
ward and forward-chaining methods, and suc-
cess has been had by more or less directly
converting the problem to SAT problems or
CSPs. In this paper we consider approaches
which utilize the "planning graph" developed
by the GraphPlan algorithm. FF is one of the
most successful planners of late; it performs
forward-chaining search oriented by a heuris-
tic based on a "relaxed" version of the plan-
ning graph (in which some constraints are not
considered).

In this paper we present our implementa-
tion of Identidem, an extension to FF. Identi-
dem utilizes localized restarts to cut down on
the time FF spends searching for ways to es-
cape from local minima. It does this by per-
forming restarts to the start point of plateaux /
saddle points after judiciously chosen time-out
intervals, and also global restarts if necessary.

FF, like all the other planners studied here,
uses for input the planning domain description
language PDDL. In this paper we present a
new planning domain entitled SuperBarman,
complete with a set of sample problem files,
written in PDDL 2.1. We evaluate the per-

formance of our Indentidem implementation
and a selection of publicly available planners
(FF, SAPA and LPG) on this planning do-
main.

2 Identidem Algorithm
Identidem is a local search algorithm for for-
ward-chain planning that builds upon FF. The
algorithm uses FF's relaxed planning graph
heuristic as well as YAHSP's lookahead algo-
rithm for adding an additional child to each
state, although we do not implement the loo-
kahead algorithm in this project. The key ex-
tension of FF that Identidem implements is the
use of random restarts.

Identidem replaces FF's enforced hill
climbing search, which uses breadth first
search to escape local minima, with a probing
local search. The algorithm attempts a certain
number of probes with increasing depth
bounds. After failing to find a better state
given the current depth bound, the depth
bound is doubled. This process continues for a
predefined number of iterations. The number
of iterations, the number of probes with a
given depth bound, and the initial depth bound
are all parameters. We used the same parame-
ter values as in [1], which has 5 iterations, 60
probes at a given depth, and an initial depth
bound of 10.

Upon failure to escape the local minimum
after the specified number of iterations, the al-
gorithm restarts from the initial state. Identi-
dem also introduces an additional method for
triggering a restart called fail-bounded re-
starts. Fail-bounded restarts are meant to re-
start the search when slow but steady progress

[2]

is being made (in the hopes that a location in
the search space with faster progress exists).
An additional parameter, called the fail bound,
indicates the amount of times a probe can fail
to escape local minima before forcing a re-
start. Every time that a probe fails to find a
state with a strictly better heuristic value a fail
counter is incremented. Whenever the fail
counter reaches the fail bound, a restart is
forced. We use the same fail bound sequence
as in [1], which starts at 32 and doubles every
three restarts. Therefore the fail bound se-
quence is 32, 32, 32, 64, 64, 64, etc.

Identidem also improves upon FF by in-
corporating neighborhood sampling with rou-
lette wheel selection. When at a given state,
the algorithm takes all helpful actions as iden-
tified by FF and places each into one bucket in
a neighborhood bucket grid. The neighbor-
hood bucket grid is a two-dimensional array of
buckets where the row indicates the action
type and the column indicates the number of
parameters that the action has in common with
the parent action (with the parameters being
preconditions, adds, and deletes).

After placing each potential child action in
a bucket, the algorithm creates a neighborhood
whose size is pre-defined by the neighborhood
size parameter. Our implementation uses the
same neighborhood size parameter as [1],
which is 3. To construct the neighborhood,
one continually randomly picks a nonempty
bucket and then randomly selects one of the
actions in the bucket to include in the
neighborhood.

Identidem also includes an additional twist
in that for the second half of the probe itera-
tions non-helpful actions are also included in
the neighborhood sampling process. This al-
lows the planner to solve problems in which
incorporating non-helpful actions is essential
to solving the problem. We implemented this
feature as a command-line option so that we
could evaluate its effect on performance.

Once a neighborhood is created, each ac-
tion n in the neighborhood is given a roulette
wheel segment value as follows:













n
n h

W 1

where hn is the heuristic value of action n and
β is the heuristic bias parameter. We follow
[1] in initially setting β to 1.5 and linearly de-
creasing its value to 0.5 as each probe within a
given depth bound is attempted. The probabil-
ity of an action in the neighborhood being
chosen is determined by normalizing across
all heuristic bias parameters.

3 Indentidem Optimizations
Caching and other optimizations are essential
for creating usable planners. Like our previous
projects, we developed our algorithms with ef-
ficiency in mind. Our optimizations include
managing our own memory (including intelli-
gent allocation), quick lookup structures for
action parameters, caching of "parameters in
common" values, and efficient neighborhood
creation.

3.1 Memory Management
Unfortunately, since we extended FF, which is
written in ANSI C, we did not continue our
C++ STL Vector saga from previous projects.
Staying in the spirit of FF's coding practices
each function manages its own memory struc-
tures. These memory structures are allocated
during the first call to the function. With the
exception of the neighborhood buckets, we
pre-allocate all memory in accordance with its
maximum possible need during the first call to
each function. Thus all stacks and other struc-
tures never need to be resized because they are
always allocated the maximum amount of
memory that they will need.

We do not pre-allocate all neighborhood
buckets because the neighborhood bucket grid
is a two-dimensional array of buckets that has
a row for each action type and columns from
zero to the largest number of parameters of

[3]

any given action. Each bucket within this grid
needs to potentially be able to contain all ac-
tions except the action specified by the
bucket's row coordinate in the grid. Indeed on
many problems this massive structure requires
too much memory to allocate outright during
the first call to the function.

To mitigate this issue, we made two modi-
fications. First, we turned the grid into a
ragged two-dimensional array (rows have a
variable number of columns). Since the col-
umn indices indicate the number of parame-
ters the action (indicated by the row) has in
common with the previous action applied, we
only need to have as many columns as the ac-
tion type has parameters (plus one for the zero
case).

Our second modification is that we only
allocate a bucket's memory the first time that
we need to place an action in the bucket. Dur-
ing the first call to the function we allocate the
grid of bucket pointers and set all of the point-
ers to null. Before inserting an action into a
bucket, we check to see if the bucket has been
allocated. If it has not been allocated, then we
allocate the memory. This simple modification
has a large impact on memory usage, as most
buckets in the grid are actually never needed.

3.2 Action Parameters
Identidem involves calculating the number of
parameters each child action has in common
with the previous action applied. FF's data
structures are not conducive for this task. FF
splits an action's parameters (its preconditions,
adds, and deletes) into three separate arrays
with each array containing integers starting at
zero. These arrays are not sorted in any way.
Thus calculating the number of parameters in
common between two actions is an O(n2) op-
eration, where n is the number of parameters
in an action.

We reduce this complexity to an O(n) op-
eration by preprocessing the actions before en-
tering the search loop. For each action we cre-
ate an array of integers that contains all pa-

rameters. We change the values of adds and
deletes by adding the number of preconditions
possible to each add value and the number of
preconditions possible plus the number of add
values possible to each delete value. These
numbers are available from FF's own preproc-
essing and do not require any additional work
to calculate.

After constructing each array of parame-
ters, we use quicksort to sort each array. Since
the arrays are sorted, we are able to calculate
the number of parameters in common between
two actions in linear time. Of course, we are
pushing the worst case O(n2) complexity onto
the sorting procedure, but this sort is per-
formed once for each action whereas the O(n2)
parameters in common calculation would be
performed significantly more times during the
search.

3.3 Parameters in Common
Caching

For every child action that we consider for our
neighborhood we must calculate the number
of parameters the child action has in common
with the parent action. This task is clearly an
easy location for optimization, as the search
process will undoubtedly run into the same
parent-child pairs multiple times. To solve this
issue, we cache all parameters in common cal-
culations. Thus after the first time an action
pair occurs, we store the resulting value in an
array. On subsequent occurrences of the same
action pair we simply grab the pre-calculated
value from the array.

To investigate the success of this caching
procedure, we recorded the amount of cache
hits while running our planner on all of the
IPC3 problems. As our results will show, this
caching is effective. Even in problems where
no restarts are required, such as the Rovers
problems, the planner still experiences an av-
erage of 46 cache hits. On more difficult prob-
lems, such as DriverLog where our planner re-
starts an average of 1,109 times, the cache hit
count is more than one million on average.

[4]

3.4 Efficient Neighborhood
Creation

The Identidem algorithm's neighborhood crea-
tion involves randomly sampling so many
nonempty neighborhood buckets and then
randomly choosing one action in the bucket
and including it in the neighborhood. As dis-
cussed earlier, the neighborhood grid can be
enormous for certain problem instances while
most buckets are empty at any given point in
time. Repeatedly randomly picking a bucket in
the grid until one finds a nonempty bucket is
clearly inefficient.

To solve this problem we maintain a stack
of bucket pointers that contain all of the non-
empty buckets. When sampling for the
neighborhood, we can simply generate a ran-
dom integer and use the modulus operator
with the integer and the number of nonempty
buckets to select a nonempty bucket. We add
buckets to the nonempty bucket stack when
inserting an action into the bucket causes the
bucket's size to increase to one.

The nonempty bucket stack is simply an
array of pointers with a size field indicating
how many items are currently in the stack.
This makes adding new items easy as we sim-
ply place the new item at the index indicated
by the current stack size and then increment
the stack size. Removing items is also delight-
fully simple. All we do is place the last bucket
pointer in the array into the position of the
pointer that we want to remove and then we
decrement the stack size.

4 Identidem Experimental
Method

Our experimental method is almost identical
to our previous projects. We conducted all of
our experiments on the Pod cluster. The Pod
cluster contains Dell Precision 390s, each with
a 2.4 GHz Core 2 Duo and 2 GB of RAM
running Ubuntu 7.04. All results in Section 5
are from running each planner on the IPC3

planning problems using 5 different seeds for
the random number generator. We used the
seeds 1 through 5. We enforced a timeout of
30 minutes for each problem.

4.1 Naming Conventions
In all results the first segment of characters
indicates the problem type while the second
indicates the problem number within the prob-
lem type. We present results for our standard
algorithm that does not use non-helpful ac-
tions as well as results for including non-
helpful actions as described in Section 2. The
results when using non-helpful actions always
have an "N" appended to the name. For exam-
ple, "Depots-07-N" indicates the results for
the seventh problem of the Depots problem
type with our algorithm using non-helpful ac-
tions. When presenting aggregate results, we
simply remove the number portion. Thus "Ze-
noTravel" indicates the aggregate results for
the ZenoTravel problem type with our algo-
rithm not using non-helpful actions.

4.2 Our Performance Metrics
We track three metrics: Restart Count, Cache
Hits, and Total Time. As the name suggests,
Restart Count is the number of times that the
algorithm restarts. Cache Hits is the number of
cache hits for our parameters in common
caching described in Section 3.3. Total Time
is the time as reported by FF's timing func-
tionality. All times are in seconds and include
all computation time, including parsing the
file, all preprocessing, and search.

[5]

5 Identidem Results
We include all our results for Identidem in the
Annex. By way of introduction, our average
success rates for each problem class, without
non-helpful actions, are the following:

Problem
Type

Attempt
Count

Success
Count

Success
Rate

Depots 110 104 0.945
DriverLog 100 67 0.67
FreeCell 100 86 0.86
Rovers 100 100 1
Satellite 100 100 1
SuperBarman 25 23 0.92
ZenoTravel 100 100 1

Of course, these averages conceal the fact
that the problem classes contain problems of
greatly varying difficulty. However, they do
illustrate that not all of the problem classes are
created equal: the DriverLog problems in par-
ticular are very difficult for Identidem,
whereas the Rovers problems are all solved. A
look at the detailed results in the annex con-
firms this difficulty disparity (none of the
Rovers problems take more than one second
on average to solve, whereas a third of the
DriverLog problems times out given the 30
minute timeout).

The main factor whose influence on per-
formance we wished to evaluate is the use of
non-helpful actions. Looking at the average
success rates for a selection of problem classes
shows mixed results:

Problem
Type

Attempt
Count

Success
Count

Success
Rate

Depots 110 104 0.945
DepotsN 110 92 0.836
DriverLog 100 67 0.67
DriverLogN 100 84 0.84
FreeCell 100 86 0.86
FreeCellN 100 93 0.93

For the DriverLog and FreeCell problem
classes, use of non-helpful actions signifi-
cantly improves results (increasing average
success rate by around 20% for DriverLog!).
However, their use actually decreases success

rate on Depots. We hypothesize that this is
due to inherent characteristics of the problem
categories. Looking at the breakdown of re-
sults on a per-problem basis (see Annex)
somewhat confirms this; indeed, for Depots
problems for example, non-helpful actions
does consistently worse. However, in some
cases the results seem chaotic with no general
trend. This is the case for DriverLog:

Problem
Restart

Count Cache Hits
Total
Time

DriverLog-17 55 2292373.2 600.1
DriverLog-17-N 13.2 417584.4 164.1
DriverLog-18 19 468734 226.3
DriverLog-18-N 11.8 97039.6 433.9

On problem 17 non-helpful actions does
considerably better, improving runtime by a
factor of 5, but on problem 18 it is half as
good as without non-helpful actions, even
though we are within the same problem class.
We suspect this is simply an artifact of the
high variance of the Identidem algorithm,
which we will examine further in the Super-
Barman results analysis later in the paper. We
believe that for this reason the average results
over each problem class actually convey per-
formance trends better than looking at indi-
vidual problems.

Another factor whose importance is shown
in our results is the role of our parameter cach-
ing mechanism. On simple problems the num-
ber of cache hits is negligible, but for the
hardest problems in each set the numbers be-
come significant. Here are the average results
for FreeCell:

Problem
Restart

Count
Cache

Hits
Total
Time

FreeCell-14-N 0 199.6 1.06
FreeCell-15-N 4.2 13275 28.60
FreeCell-16-N 3.6 6877.4 16.26
FreeCell-17-N 1.2 1311.2 6.03
FreeCell-18-N 19.2 415158.2 1244.61
FreeCell-19-N 18.8 85729.8 1353.58
FreeCell-20-N 18.6 155572.8 1532.97

[6]

Cache hit numbers are on the order of one
million for some cases, which translates to a
significant performance gain. However, the
number of cache hits is not linear relative to
runtime: FreeCell-18 has slightly shorter run-
time than FreeCell-19, but has an order of
magnitude more cache hits. These variations
may however simply be due to the high vari-
ance of our algorithms.

6 SuperBarman
Planning Domain

6.1 Problem Description
In our SuperBarman class of problems, we
present a problem faced by everyone at some
point in their life: how to run a bar efficiently.
The planner must come up with a sequence of
actions for a barman which satisfies all of the
bar's patrons. The barman has a set of bottles
of beverages on the rack behind him, and a set
of (initially empty) glasses on the bar counter
in front of him. He can hold as many bottles at
a time as he has hands, and can pour liquid
from any bottle he is holding into any of the
glasses on the counter. A cocktail is a mix of
three liquids, added in a specified ordering to
the glass.1 Once a cocktail is ready (I.e. it con-
tains the mix of liquids that a certain customer
wants), he can give it to the customer. More
formally, the specification of the problem
class is the following:
 Types:

 liquid (which represents a specific
alcohol, juice or accompaniment)

 bottle (there is one bottle on the rack
for each kind of liquid)

 glass
 customer (we assume without loss of

generality that each customer wants

1 In our original problem class, called simply Barman,
the order of addition of the liquids to the glass did not
matter. However, introducing the required ordering
both makes the problem more demanding (as otherwise
each bottle only needs to be picked up once), and more
realistic.

one specific drink)
 hand (our protagonist, like any self-

respecting barman, is ambidextrous;
unlike most barmen, he can have as
many hands as we wish)

 Predicates:
 bottleContains ?b - bottle ?l – liquid :

"The bottle b contains the liquid l"
 onRack ?b – bottle :

"The bottle b is currently on the rack"
 onBar ?g – glass : "The glass g is

currently on the bar counter"
 pouredInLast ?l - liquid ?g – glass :

"l was the last liquid poured into glass g"
 pouredInAfter ?lafter ?lbefore - liquid

?g – glass : "lafter was poured into the
glass g just after the liquid lbefore"

 holding ?b - bottle ?h – hand : "The barman
is holding the bottle b in his hand h"

 handFree ?h – hand : "The barman's
hand h is not holding anything"

 wants ?c - customer ?l1 ?l2 ?l3 ?l4 –
liquid : "Customer c wants a cocktail
made by putting into a glass first l4,
then l3, then l2, then l1"

 satisfied ?c – customer : "Customer c
has been given his drink and is
therefore satisfied"

 Actions:
 pickup : "The barman picks up bottle

b from the rack with his hand h"
 putdown : "The barman puts the bottle

b, which he was holding in his hand h
back on the rack"

 pour : "The barman pours the liquid
lnew from the bottle b, which he is
holding in his hand h, into the glass g,
into which he had previously poured
the liquid lbefore"

 give : "The barman gives customer c
the glass g which contains the cocktail
made up of l4, l3, l2, l1, as specified
by the customer"2

2 Note that giving a drink to a customer does not require
the use of a hand, as the barman can simply visually in-
dicate the glass on the counter to the customer.

[7]

All five instances of the problem have some
common points in their objects, initial state,
and goals:
 Objects:

 There is one "fake" liquid, called
emptyL, which all glasses initially
"contain"

 There are as many bottles as there are
liquids (with the exception of
emptyL)

 There are as many glasses as there are
customers

 Initial state:
 Each liquid is contained by one bottle

(with the exception of emptyL)
 All bottles are on the rack
 All glasses are on the bar
 All glasses are empty, i.e. such that:

(pouredInLast emptyL glass_i)
 All hands are free
 Each customer wants one specific

cocktail, and the variable l4 is always
emptyL.

 Goals:
 The goals are always that every

customer be satisfied

The different problems vary in the number of
liquids/bottles, the number of glasses/custom-
ers, the number of hands the barman has, and
the composition of the cocktails wanted by the
customers. To summarize the five problems:
 SuperBarman-1 is the most basic form,

with just one customer and one hand.
 SuperBarman-2 has two customers

wanting the same cocktail, and so tests
whether the planner can avoid picking up
and putting down each bottle multiple
times.

 SuperBarman-3 has three customers,
who want cocktails designed such that
each bottle only has to be picked up
once, if the planner finds an appropriate
sequencing of drinks (I.e. ice, then
martini, then vodka, then orange juice).

 SuperBarman-4 has 6 liquids, 6 glasses,

2 hands, and randomly generated
cocktails (the cocktail specifications
were generated from the digits of Pi).

 SuperBarman-5 has 10 liquids, 10
glasses, 4 hands, and randomly generated
cocktails.

6.2 Motivation
We designed the SuperBarman problem class
such that it is easy to find a primitive solution,
but hard to find a solution with a short plan
length. Indeed, there is an obvious general so-
lution to these problems: just satisfy the first
customer, then the second customer, etc.; for a
given customer, just make the cocktail by
picking up the bottle for the first ingredient,
pour it in the glass, put the bottle down, and
continue for the two other ingredients. This
obviously provides a plan which is linear in
the number of customers, but this primitive
method clearly leads to inefficient plans, as
with a more sophisticated approach one can
decrease the number of pick-ups and put-
downs of bottles required to make all of the
cocktails, to decrease plan length. The pres-
ence of multiple hands further complicates
things.

6.3 Planner Performance
For comparison purposes, we evaluated the
performance of four different planners on our
SuperBarman problem set: FF, SAPA, LPG,
and our implementation of Indentidem. SAPA
is a Forward Chaining Heuristic Metric Tem-
poral Planner. Like other algorithms consid-
ered here, it uses a planning graph-based ap-
proach, and uses heuristics which are designed
to take into account both cost and makespan
(see [2]).

LPG is a popular planner which performs
a WalkSAT-inspired local search using heuris-
tics based on a parameterized objective func-
tion (see [3]). In the following results we ran
the publicly available implementation of LPG
in two different modes: "speed", which mini-
mizes runtime, and "quality", which optimizes

[8]

plan quality (I.e. minimizes the cost of the
plan) at the cost of longer runtimes. We refer
to these two modes as LPG-speed and LPG-
quality, respectively.

For the purposes of comparison, we
graphed runtime and the final plan's number
of actions for each planner. As LPG generated
plans with parallel actions, we also graphed
total plan length, but this is not a fair point of
comparison as our other planners do not do
this. All results were obtained on an Athlon
X2 system with 2GB of RAM running Kub-
untu. We ran Identidem with Algorithm 3 and
non-helpful actions.

 P1 P2 P3 P4 P5
FF 0 0 0.01 0.18 2.37
SAPA 0.05 * 3.04 * *
LPG-quality 0.26 0.26 0.26 10.26 177
LPG-speed 0 0.01 0.17 0.19 7.33
Identidem (avg) 0 0 0.06 102 *

Runtime results (seconds)

 P1 P2 P3 P4 P5
FF 9 19 26 46 76
SAPA 9 * 20 * *
LPG-quality 9 13 23 38 58
LPG-speed 9 15 23 65 72
Identidem (avg) 14 18.8 34.4 76.2 *

Plan size (number of actions)

Unfortunately SAPA gives very poor per-
formance on the SuperBarman problems, fail-
ing on problems 2, 4 and 5 (the *'s indicate
timeouts or failure to finish due to out-of-
memory errors, which is the case for SAPA).
It is unclear why it fails so badly, but the fact
that it generates a valid plan for problems 1
and 3 in a reasonable amount of time seems to
indicate that it is being used properly. It is no-
table however, that SAPA provides the short-
est plan length on problem 3 (20 actions as
opposed to 23 for LPG). Problem 3 was de-
signed to test the ability of the planner to
properly sequence the bottle pick-ups in order
to minimize plan length, and SAPA achieves
this when it works.

FF is by far the best performer in terms of
runtime. However, it also generates longer
plans than LPG (or SAPA on problem 3). This

is surprising, as the enforced hill-climbing
method employed by FF is supposed to en-
courage shorter solutions according to the
proponents of FF (see the Results section of
[4]). It would therefore seem that the version
of FF considered here is minimizing run-time
at the cost of plan length. The excellent run-
time results are therefore somewhat deceptive:
as we have already stated, each of the Super-
Barman problems can be resolved very simply
with basic methods; the real work lies in find-
ing a short plan length. We would tend to con-
clude that the SuperBarman problem class is
not well adapted to evaluating FF in this form.

The most satisfactory performance with
respect to plan length is given by LPG in
"quality" mode. In all but one case (problem
3), LPG-quality yields the shortest total num-
ber of actions. If one considers plan duration,
with parallel actions, LPG does even better:

 P1 P2 P3 P4 P5
Plan size 9 13 23 38 58
Plan duration 9 9 20 18 18

Plan size and duration for LPG-quality

plan duration is half the number of actions for
problem 4, and a third for problem 5. We de-
duce that LPG's multi-parameter objective
function is well adapted to the SuperBarman,
allowing LPG to take advantage of natural
parallelizability of the actions (indeed, for
each SuperBarman problem, plan duration can
be divided roughly by the number of hands if
actions are parallelized).

However, runtime performance of LPG-
quality does blow up on the harder problems;
it seems that the algorithm does not scale well
on this class of problem beyond 10 liquids and
10 glasses. Furthermore, the short plan lengths
come at a heavy price: LPG-quality is roughly
two orders of magnitude slower than FF for all
of the problems. This cost is however some-
what illusory, as the main point of SuperBar-
man was always to evaluate plan length rather
than runtime. LPG-speed emerges as an awk-
ward compromise between FF and LPG-
quality. On problem 5, its runtime is 3 times

[9]

that of FF, for roughly the same plan length.
On problem 4, its plan length is actually worse
than FF's.

The performance of our own implementa-
tion of Identidem is extremely disappointing
on the SuperBarman class of problems. On the
easy problems (1 through 3), there is little dis-
cernible difference with regular FF for aver-
age runtime. On problem 4 however, runtime
becomes extremely poor, around 100 seconds
on average, and on problem 5 all but one
seeds do not finish. These average figures do
not tell the whole story however; examination
of the results for individual seeds reveals an
enormous variance problem:

 P1 P2 P3 P4 P5
r1 0 0 0.01 0.69 *
r2 0 0 0.04 217 36
r3 0 0 0 226 1325
r4 0 0 0.24 2.78 *
r5 0 0 0.01 64 *

Runtime results for Identidem
with five different seeds (seconds)

There is terrific variance in the runtime re-
sults: runtime varies by three orders of magni-
tude for problem 4, and the one of the two
seeds which does finish on problem 5 takes
only 36 seconds (which is considerably better
than LPG-quality for example). Variance is
somewhat to be expected given that the choice
of seed influences paths Identidem's probes
take, but it is shocking that it should be this
strong since one of the points of restarts is to
reduce variance.

The plans generated by Identidem are poor
in terms of plan length compared to the other
planners, which is also disappointing. How-
ever, it is interesting to note that if one con-
siders each time the minimum result over the
five seeds we considered, then the results look
quite different:

 P1 P2 P3 P4 P5
LPG-quality 0.26 0.26 0.26 10.26 177
LPG-speed 0 0.01 0.17 0.19 7.33
Identidem (min) 0 0 0 0.69 36

Runtime results (seconds)

From this point of view Identidem appears
competitive with LPG, with runtime in be-
tween LPG-speed and LPG-quality. This indi-
cates that a promising approach would be to
use a random restart mechanism, restarting
Identidem, restarting the algorithm with a new
seed after a certain (growing) time window is
filled. Alternatively one could run several
threads of Identidem with different seeds on
different processor cores, and take the first
plan to finish.

7 References
[1] Andrew Coles, Maria Fox, and Amanda Smith

(2007). A New Local- Search Algorithm for For-
ward-Chaining Planning, ICAPS 2007.

[2] M. B. Do and S. Kambhampati. Sapa: A Scalable
Multi-objective Heuristic Metric Temporal Plan-
ner. Journal of AI Research, 20:155--194, 2003.

[3] Gerevini, A. and Serina, I. 2003. Planning as Pro-
positional CSP: From Walksat to Local Search
Techniques for Action Graphs. Constraints 8, 4
(Oct. 2003), 389-413.

[4] Hoffmann, J.. FF: The Fast-Forward Planning Sys-
tem. AI Magazine 22[4], 57-62. 2001. AAAI Press.

