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1 Introduction 
Job shop scheduling problems arise in various 
areas of computing and real-life domains. To 
formalize a typical job shop scheduling prob-
lem, one considers a set of operations, which 
must be executed in a specified time window. 
The problem contains precedence constraints 
(i.e. operation A must occur before operation 
B) and resource constraints (i.e. operation A 
needs exclusive use of resource R during its 
execution). These scheduling problems are 
NP-complete. 

One can translate a JSS problem into a 
temporal constraint satisfaction problem, for 
which the variables are the time points for the 
tasks involved and the constraints are prece-
dence and time-window constraints.  

In this paper we consider a set of 60 prede-
fined JSS problems (each with 50 operations 
and 5 resources), which our algorithms aim to 
solve by scheduling the given set of operations 
according to the given set of constraints.  

We start off by translating the base prob-
lem as a temporal problem and evaluating the 
earliest and latest start times for each of the 
operations. We use the Bellman-Ford algo-
rithm to do this initialization. We then per-
form constraint-based search to order the op-
erations that share resource needs, using 
Slack-based ordering heuristics to select 
which variables/values to pick. The resource 
constraints are satisfied by using a chrono-
logical backtracking search procedure to 
search for a consistent solution. We perform 
constraint propagation at each search node, ei-
ther in the distance graph or in the constraint 
graph. 

2 Algorithms 

2.1 Bellman-Ford Algorithm 
The Bellman-Ford algorithm computes the 
single-source shortest paths in a weighted dis-
tance graph. Unlike Dijkstra’s algorithm, 
Bellman-Ford can be used in the presence of 
negative cycles, which is a necessary property 
for the problems at hand. Indeed, a temporal 
problem is considered to be consistent only if 
it does not have a cycle of negative weight, 
and Bellman-Ford recognizes this case.  

The Bellman-Ford algorithm takes in a 
graph, and progressively computes the short-
est paths from the given source node to the 
other nodes. At each iteration of its primary 
loop, Bellman-Ford attempts to “relax” each 
edge u-v, i.e. to see if there is a shorter path to 
v through the edge u-v. Bellman–Ford runs in 
O(V.E) time, where V and E are the number of 
vertices and edges respectively (at each itera-
tion it relaxes all edges, and iterates this up to 
|V| - 1 times). The repetitions allow minimum 
distances to accurately propagate throughout 
the graph, since in the absence of negative cy-
cles the shortest path can only visit each node 
at most once (and negative cycles can be de-
tected after the maximum number of itera-
tions). 

2.2 Ordering of Operations 
Every task that has to be scheduled has an ear-
liest start time (est), a latest start time (lst) and 
a processing time (p). There are four possible 
cases for ordering two given operations. When 
esti + pi ≤ lstj and estj + pj > lsti , then opera-
tion i must necessarily be scheduled before 
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operation j (Case 1). Case 2 is the reverse, 
when operation j necessarily precedes opera-
tion i. Case 3 is when there is a conflict be-
tween the two operations (in which case we 
need to backtrack). Case 4 is when either or-
dering is possible.  

Constraint based analysis is used to rule 
out orderings in cases 1, 2 and 3; in these 
cases we continue by simply choosing the ob-
vious ordering (or by backtracking in case 3). 
Slack based heuristics are used to decide 
which ordering to pick in case 4. 

2.3 Search Procedure  
We use chronological backtracking search to 
search for a solution satisfying the resource 
constraints. We first start by initializing using 
the Bellman-Ford algorithm discussed in Sec-
tion 2.1. Then there are two functions, label() 
and unlabel(), that are important.  

In the label function we select a value 
from the domain and propagate it through the 
graph; if it turns out to be inconsistent with the 
graph then we undo the propagation, unassign 
the value and delete it from the domain. We 
move on to try a different value from the do-
main until we find a value that is consistent or 
exhaust the domain. If we find a value that is 
consistent it is pushed into the assigned stack 
and the next variable is picked up. If no con-
sistent value is found for that variable then we 
return false. Each variable is a pair of opera-
tions that both require the same resource. The 
domains of each variable contain a maximum 
of two values, one for each possible ordering 
of the pair of operations. 

In the unlabel function we remove the in-
consistent value for the variable, undo the 
propagations for that value and update the 
domain for that variable. 

2.4 Variable Ordering Heuristic 
A variable is a set of operations i, j that share 
a resource need. We discussed four possible 
cases in the ordering of two operations in Sec-
tion 2.2. The variable ordering heuristic helps 

select what orderings are to be dealt with first. 
Cases 1 and 2 are picked first and then Case 4. 
Case 1 and 2 can be resolved directly by 
choosing the only possible corresponding or-
dering. Case 4 needs to be handled differently: 
we use temporal slack to decide among the 
different possible variable pairs.  

The slack when ordering i before j is de-
fined as lstj – (esti +pi) and when ordering j 
before i is lsti – (estj + pj). The minimum 
overall slack between these two decisions is 
the minimum between the two slack values.  

There is another improved version of the 
slack heuristic called the BSlack heuristic. In 
this we calculate a and b as the minimum and 
maximum values of the slack between the de-
cision to have i precede j and j precede i. Then 
we calculate S as (a/b). Then Bslack(i  j) = 
Slack(i  j)(S-1/a + S-1/b) and Bslack(j  i) 
= Slack(j  i)(S-1/a + S-1/b).  

Finally, we also considered a slightly dif-
ferent version of BSlack, which we call 
B2Slack, which is that given in the original 
Smith & Cheng paper [1]. Instead of using a 
and b as the negative inverse powers of S, we 
simply use constants (we used the values 2 
and 3, which Smith & Cheng report to be the 
best pair). 

2.5 Value Ordering Heuristic 
In case 4 we need to choose between the two 
potential orderings, i  j and j  i. We can 
use the Slack values of the two potential or-
derings as a heuristic for this, by taking the 
ordering with the highest slack (or alterna-
tively the lowest). Between the variable and 
the value ordering heuristics we should be 
able to solve most problems with few back-
tracks.  

2.6 Constraint Propagation 
We do constraint propagation when we choose 
a particular ordering in the label function. We 
propagate the choice through the graph to see 
if it holds consistently through the graph. This 
can be done in two ways. One is by continuing 
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the Bellman-Ford algorithm after each new 
operation ordering is chosen. The second way 
is to calculate the new est and lst values for 
the new ordering and then propagate the est 
forward through the outward edges defined by 
the ordering constraints and lst backward 
through the inward edges defined by the or-
dering constraints. For example consider 
choosing i  j then estj = max(estj, esti + pi) 
and lsti = min(lsti, lstj – pi). We then propa-
gate estj forward through constraints j  k 
and propagate lsti backward through con-
straints k  i. An inconsistency is detected 
when esti > lsti for any i. 

3 Optimizations 
Caching and other optimizations are essential 
for creating usable job shop scheduling 
solvers. Like our previous projects' solvers, 
we developed our algorithms with efficiency 
in mind. Our optimizations include managing 
our own memory for most data structures (no 
STL Vectors), quick lookup structures for 
variables and operations, intelligently updat-
ing slacks and cases, tuning the temporal rea-
soner, random restarts, and several other 
memory allocation tweaks. Unless otherwise 
noted, all results in this section used our ex-
perimental method as detailed in Section 4 

3.1 Memory Management 
As we have shown with our previous solvers, 
using our own memory management tech-
niques through our superArray class instead of 
the C++ Standard Template Library (STL) 
Vector class can result in a measurable per-
formance gain in the actual problem domain. 
We again chose to use our superArray class, 
and will only provide a brief overview of the 
discussion from our previous two projects. 

As a reminder, through testing with our 
SAT and CSP solvers we found that our su-
perArray is 1.4 times faster at reads and 1.7 
times faster at writes than the Vector Op 
method and 5.5 times faster at reads/writes 
than the Vector At method. (The Vector At 

method includes out-of-bounds checking, 
while superArray and Vector Op do not.) Ta-
ble 3.1a summarizes these results. 

 
Table 3.1.a: TestVector.h Computation 

Time Relative to superArray 
 

 Reads Writes 
superArray 1.0 1.0 
Vector Op 1.4 1.7 
Vector At 5.5 5.5 

 
In our previous crossword puzzle domain, 

we were able to calculate the real-world per-
formance gains of using superArray through a 
preprocessor command called SUPERAR-
RAY_TYPE in data_structures.h of our source 
that effectively gave us the ability to decide at 
compile time whether to use the Vector Op 
method or our superArray method. In the 
crossword puzzle domain we showed that our 
superArray is 1.02 times faster than using 
Vector Op. Using our read/write results from 
Table 3.1a we were also able to estimate that 
our superArray would be 1.18 times faster 
than the Vector At method. We unfortunately 
could not use our preprocessor method to ob-
tain exact results of using Vector At because 
the switch took advantage of the fact that the 
superArray and Vector Op methods both use 
brackets [ ] to access the array members. 
These results are summarized in Table 3.1b. 

 
Table 3.1.b: 

Crossword CSP Computation 
Time Relative to superArray 

 

superArray 1.0 
Vector Op 1.02 
Vector At 1.18* 
*Estimated using relative read / 

write times from Table 3.1.a. 
 

Since we developed our schedulers using 
the superArray class, we can again measure 
real-world performance gains over using Vec-
tor. To add to the usefulness of this exercise, 
and to increase our productivity, we also 
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measured the real-world performance gains 
over using a method similar to Vector At. We 
added an option to SUPERARRAY_TYPE 
that allows us to use the superArray class with 
out-of-bounds checking. This not only allows 
us to measure the real-world performance hits 
brought about by out-of-bounds checking, but 
it also eliminated many development bugs and 
increased productivity because we could pause 
the program in our debugger whenever an out-
of-bounds error occurred. 

We measured performance by turning all 
heuristics off, turning random restarts off, set-
ting the max time to ten seconds, and execut-
ing the solver with each of the various settings 
on problem 3 (sadeh3.fol). With these settings, 
the solver was not be able to find a solution 
before the timeout. For each setting of SU-
PERARRAY_TYPE, we executed the solver 
using ten different seeds and we recorded the 
amount of times that the solver attempted to 
label a variable. Since we used the same ten 
seeds for all three settings of SUPERAR-
RAY_TYPE, the solvers made the same deci-
sions in the same order and the only difference 
was speed. 

Table 3.1.c shows the results of this ex-
periment. superArray is again 1.02 times 
faster than using the Vector Op method. su-
perArray is 1.16 times faster than using su-
perArray with out-of-bounds checking, which 
is similar to our estimated 1.18 times faster in 
the crossword puzzle domain. 

 
Table 3.1.c: 

JSS Computation 
Time Relative to superArray 

 

superArray 1.0 
Vector Op 1.02 
Vector At* 1.16 

*Actually superArray 
with out-of-bounds checking. 

 
Since we do not require array resizing, the 

only advantage of using Vector is the out-of-
bounds checking in At. Now that we have in-
cluded that functionality into our SUPERAR-

RAY_TYPE switch, we have no real reason to 
use Vector. In fact, we are much better off us-
ing superArray because we can use out-of-
bounds checking during development and eas-
ily strip the out-of-bounds checking from the 
program when compiling for a release. 

3.2 Quick Lookups 
Data structures are critical for optimizing any 
algorithm. In the job shop scheduling domain, 
it is critical that our algorithms can loop 
through all of the operations that have an in-
coming or outgoing edge with respect to some 
given operation. Our algorithms also require 
an efficient method for looping over the set of 
variables that contain a given operation. To 
handle these needs, our Operation class in-
cludes the arrays outEdges, inEdges, and vari-
ablesIn, which contain the operations that 
must happen before the given operation, the 
operations that must happen after the given 
operation, and the variables that the given op-
eration exists in. The importance of these data 
structures will become apparent in the remain-
ing sections of Section 3. 

3.3 Updating Slacks and Cases 
Inefficient slack and case updates for the vari-
ables can have an enormous impact on speed. 
After each propagation while labeling and af-
ter undoing a propagation while unlabeling, 
one must update the slack values and cases of 
the variables. Through rough experiments we 
found that naively recomputing all 
slacks/cases drastically decreases perform-
ance. 

While propagating an ordering choice, we 
keep track of all of the operations that have a 
change in earliest start time or latest start time. 
If the propagation did not find an inconsis-
tency, we then need to update all of the slack 
values. We do this by using the data structures 
in Section 3.2 and only recomputing the slacks 
and case values for variables that contain an 
affected operation. We found that this small 
change makes the overall program 1.05 times 
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faster than recomputting the slacks/cases for 
all unlabeled variables. 

We use the slack values to calculate the 
case values. If we are using an additional heu-
ristic such as Bslack then we only update the 
Bslacks if the variable is in case 4 because we 
only use the heuristic when comparing case 4 
variables. 

If any of the variables are found to be in 
case 3 then we immediately unpropagate and 
treat the labeling attempt as a failure. We do 
not do this by moving to the unlabel function. 
Instead, we treat it in the same way as if the 
propagation had failed (we simply remove the 
value from the variable's domain). This single 
optimization, coupled with the random restarts 
in Section 3.6, makes our algorithm fast 
enough to solve all 60 problems with all heu-
ristics off in a total cumulative time of around 
35 seconds. Removing either this optimization 
or the random restarts makes the solver spend 
much more time searching for a solution. 

3.4 Memory Allocation and Quick 
Insertions 

As we noticed when creating our SAT and 
CSP solvers, memory allocation can be costly. 
To reduce the amount of memory allocation 
required during the search, we allocate all data 
structures before starting the label/unlabel 
loop. This includes allocating enough space in 
the inEdges and outEdges arrays of each op-
eration so that each operation can potentially 
store all other operations in each array without 
resizing. When adding an edge to an operation 
during propagation, we simply treat the edge 
arrays as stacks and push the new operation 
onto the top by using the current length of the 
array as the index into the array. When remov-
ing an edge while undoing a propagation, we 
simply pop the operation off of the stack by 
decrementing the array's length variable. We 
also preallocate all arrays that are used by the 
propagator to store the changed start times 
during any given propagation. Additionally, 
we make every attempt to use pointers and not 

invoke a copy constructor anywhere in the 
solver's code. 

3.5 Temporal Reasoning 
 

3.5.1 Temporal problem transforma-
tion 

In order to even begin solving the job shop 
scheduling problem, we first transform it into 
a temporal scheduling problem and determine 
the earliest and latest possible start-times for 
each of the operations by running a shortest-
path algorithm on the distance graph. For this 
initial transformation we consider the length, 
before, release, and due job shop constraints, 
but not the needs constraints (which are the 
primary consideration of the subsequent 
search phase). 

As the temporal-problem distance-graph 
based approach uses time points (and not time 
intervals) as variables, we initially used as 
variables: 

 
− the start time of each operation 
− the end time of each operation 
− the time origin  

 
This naïve approach results in 2*n+1 variables 
(where n is the number of operations). How-
ever, since the job shop problems specify a 
length for each operation, it is clear that hav-
ing separate variables for the start and end of 
each operation is redundant (indeed, the arcs 
between the start and end variables for each 
operation in our naïve implementation were 
actually just specifying that end = start + 
length). 

We can therefore safely remove all the 
end-time variables, practically halving the 
number of variables and removing the length-
constraint arcs (of course, the length con-
straints are implicitly contained in the other 
values of the other arcs).  
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3.5.2 Bellman-Ford optimization 
As for every graph-based algorithm imple-
mentation, a key factor for the performance of 
our Bellman-Ford implementation is the 
choice of the data structure used to represent 
the graph. For obvious efficiency reasons, we 
represented the nodes as integers indexed 
from 0, which allows us to index the node di-
rectly into C arrays.  

To capitalize on this we naively repre-
sented the edge set as an n*n 2-dimensional 
array (where n is the number of nodes). The 
drawback to this approach is that to iterate 
over all edges, one actually has to iterate over 
every cell in the matrix, and check if there is 
an edge or not for each cell. This is clearly in-
efficient if the edge matrix is at all sparse. 

To improve on this we changed the edge 
set representation to just be a stack of edge 
structs, which obviously allows us to iterate 
over all the edges in time linear in the number 
of edges. As this is the only type of access 
Bellman-Ford makes to the edges, this data 
structure is “optimal” in time complexity for 
the case at hand. This change yielded a 4x 
speed-up in our over-all system (when using 
Bellman-Ford for constraint propagation as 
well), which strongly justifies post-hoc the op-
timization. 

We further optimized the algorithm by 
stripping out all elements not relevant to our 
usage: in particular, as we never need to actu-
ally generate the shortest paths themselves, the 
П array of back-pointers is useless here. 

3.5.3 Constraint propagation in the 
distance graph 

After the initial earliest/latest start-time de-
termination step, the Bellman-Ford component 
can also be used as a sub-routine for constraint 
propagation in the search phase. The simplest 
way to do this is simply to add an edge corre-
sponding to the new constraint to the distance 
graph, and then run Bellman-Ford from 
scratch to determine the shortest paths. This is 
obviously extremely slow and inefficient. 

We can improve on this by observing that 
adding a new edge to the distance graph can 
only decrease shortest path distances, as all 
the former shortest paths are still valid. There-
fore we can add the new edge and just con-
tinue where the last run of Bellman-Ford “left 
off” (i.e. starting off with the previously gen-
erated d array). Empirically this yields roughly 
a 10x speed-up relative to fully re-running 
Bellman-Ford. However, a brief theoretical 
analysis reveals that the speed-up is very de-
pendent on the sparsity of the graph and the 
position of the new edge relative to source. 
And in the worst case, with a cheap new edge 
adjacent to the source, this method degrades to 
fully re-running Bellman-Ford. We suspect 
that there is a more sophisticated and efficient 
way of propagating constraints in the distance 
graph, and will look further into this in the fu-
ture. 

Of course, another problem with this ap-
proach is how to efficiently “unpropagate” a 
formerly propagated constraint. The most ba-
sic solution is simply to remove the corre-
sponding edge from the distance graph and 
fully re-run Bellman-Ford. However, funda-
mentally we simply want to restore the “state” 
of Bellman-Ford to what it was before the bad 
constraint propagation. And the state of Bell-
man-Ford is nothing more than the d shortest-
path-distance array. We therefore solved the 
problem in a simple time-efficient memory-
inefficient manner: whenever we propagate a 
constraint, we back up the former d array onto 
a stack. Then if we want to unpropagate a 
constraint, we just remove the corresponding 
edge, pop the former d array from the stack 
and set it back into Bellman-Ford's state. 

3.6 Restart Timeouts 
We found that many of our algorithms were 
susceptible to bad luck on their initial seed 
values for the random number generator. We 
randomize our choices by randomly shuffling 
the array of variables before entering the la-
bel/unlabel loop and after a restart is triggered. 
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We found that implementing continual, quick 
restarts significantly decreases the computa-
tion time required to find schedules. 

An obvious insight from these observa-
tions is that periodically restarting with a re-
shuffled ordering in which equally good vari-
ables are chosen for labeling could drastically 
improve overall performance. Similar to our 
restart timeouts for our CSP solvers, we im-
plemented an increasing restart timer that al-
lows the algorithm additional time between 
restarts as the number of restarts increases. 
We found that rapid restarts worked best. 

Thus all of our solvers have the execution 
length of the first run set to one second, with a 
multiplier of 1.025. The first run is allowed to 
execute for 1.0 seconds, the second run for 
1.025, the third for 1.05, and so on. Unlike our 
CSP solvers, we did not include a method for 
ensuring deterministic behavior given the 
same initial seed. We did not include this fea-
ture because in our previous project we found 
it to be hindering in our CSP solver perform-
ance. 

3.7 Variable Ordering 
When not using any heuristic for choosing 
which variable to label next, one would gener-
ally think that choosing all case 1 and case 2 
variables before case 4 variables would be an 
obvious smart selection choice. We found that 
with our solvers this is not the case. Quite sur-
prisingly, choosing the first variable in the ar-
ray of unlabeled variables performed better 
than the previously mentioned selection crite-
rion. 

We compared the two selection methods 
on Problem 3 (sadeh3.fol), which is one of the 
more difficult problems for our solvers to 
solve. We ran both selection methods with 10 
different seeds, using the random restart set-
tings described in Section 3.6 and using no 
special heuristics. Neither solver experienced 
a timeout. In terms of the average CPU time 
for each solver averaged over all 10 seeds, re-
turning the first variable was 40 times faster 

than choosing all case 1 and case 2 variables 
before considering case 4 variables. 

The reason for this massive speed differ-
ence might be that we do not maintain sepa-
rate sets for the unlabeled variables. We keep 
a single array that contains all unlabeled vari-
ables. Thus in order to ensure that we choose 
all case 1 and case 2 variables first, we always 
have to loop through the entire array of unla-
beled variables. This loop could be the cause 
of the slowdown. 

To remedy the situation, we could main-
tain two sets of unlabeled variables and move 
the variables amongst the sets when their 
slacks/cases are updated. If we had separate 
sets then we would not need the loop. Unfor-
tunately, we could not pursue this further due 
to time constraints. 

4 Experimental Method 
Our experimental method is almost identical 
to our previous projects. We conducted all of 
our experiments on the Pod cluster. The Pod 
cluster contains Dell Precision 390s, each with 
a 2.4 GHz Core 2 Duo and 2 GB of RAM 
running Ubuntu 7.04. All results in Section 5 
are from running each solver on the 60 sched-
uling problems using 10 different seeds for the 
random number generator. We used the same 
seeds as in our CSP solvers. These seeds were 
chosen by seeding the random number genera-
tor with the clock's time and then printing out 
10 random numbers. The readme included 
with the source describes how to specify your 
own seed or which of our 10 seeds to use. 

4.1 Naming Conventions 
In all results we refer to our constraint-graph 
propagator as C and our distance graph propa-
gator as BF. Our variable ordering heuristics 
include NONE, BSLACKL, B2SLACKL, 
MOSL, BSLACKG, B2SLACKG, and 
MOSG. Our value ordering heuristics include 
NONE, SG, SL, BSG, BSL, B2SG, and B2SL, 
with SG and SL using the slack values, BSG 
and BSL using the Bslack values, and B2SG 
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and B2SL using the Bslack values with pa-
rameters of 2.0 and 3.0 as described in the 
Smith and Cheng 1993 paper. An "L" at the 
end of a name indicates that we are minimiz-
ing the value while a "G" indicates that the 
heuristic is maximizing the value ("L" and 
"G" were chosen due to the use of the less 
than and greater than operators). The naming 
convention for our solvers is var?-prop?-val? 
where the question marks are replaced with a 
propagator or heuristic from the previous lists. 

Through all of our experiments we gath-
ered results for all combinations. We imposed 
a timeout limit of 30 seconds for each sched-
uling problem. Our best solvers were able to 
solve all 60 scheduling problems within the 30 
second timeout constraint for all seed values. 
Several solvers were even able to solve all 60 
problems in a cumulative time of 30 to 35 
seconds. Additionally, we ran all solvers that 
experienced timeouts from this initial run a 
second time with the same seeds and a 10 
minute timeout limit. 

4.2 Our Performance Metrics 
We track seven metrics: Die EST Counter, 
Die LST Counter, Label Counter, Unlabel 
Counter, CPU Time, Real Time and Restart 
Counter. Die EST Counter and Die LST 
Counter record the amount of times that a 
propagation detects an inconsistency while 
propagating the earliest start times or latest 
start times respectively. Label Counter is the 
amount of times we attempt to label a variable 
and Unlabel Counter is the amount of times 
we unlabel a variable. Restart Counter is the 
number of times the solver restarts the search 
and reshuffles the ordering of the variables in 
the unlabeled variables array. 

The CPU Time and Real Time are both in 
seconds. Since our CPU timer is less reliable 
for runtimes close to zero, we record the Real 
Time for both CPU Time and Real Time when 
the reported CPU Time is less than one. CPU 
Time and Real Time do not include the proc-
essing time for reading in the problems, but do 

include the time spent preallocating the 
solver's memory. The timing starts when the 
function Scheduler::scheduleProblem is 
called. 

5 Progressive results analysis 
As we progressively improved our algorithms’ 
performance, we juggled several different de-
cision factors and were continually re-
evaluating our performance to identify poten-
tial improvements. For example, our introduc-
tion of a random restart mechanism was a re-
action to the extremely high variance in our 
run-times and success rates. In order to avoid 
an excessively long narrative, we shall evalu-
ate in this section certain key areas of the per-
formance and behavior of our final implemen-
tation. 

5.1 Constraint propagation methods 
In our earlier naïve implementations, we 
avoided performing proper constraint propa-
gation by simply running Bellman-Ford from 
scratch in the distance graph after each vari-
able assignment. Obviously this resulted in 
atrocious performance. Subsequently, we em-
ployed two constraint propagation methods: 
propagation in the distance graph through con-
tinued Bellman-Ford, and propagation in the 
constraint graph following the rules discussed 
in class. 

While the modified Bellman-Ford ap-
proach is better than nothing, and benefits 
from our optimizations to our Bellman-Ford 
implementation, it is dominated by the con-
straint graph propagation approach (referred to 
as “propC” in the following results). Indeed, 
the two approaches give the exact same final 
results, but our evaluation showed that the 
constraint graph method is approximately 23 
times faster than the distance graph method. 
This explains why in all subsequent results we 
will primarily use constraint graph propaga-
tion. 
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5.2 Variable ordering heuristics 
The most significant question mark in our 
minds when we started evaluating our algo-
rithms was on the effect of the variable order-
ing heuristics. Indeed, Dynamic Variable Or-
dering proved hugely effective for CSP solv-
ing, so Case 4 variable ordering with a good 
heuristic promised to be effective for JSPs as 
well.  

We evaluated three heuristics: regular 
Slack (referred to as MOS in the results), 
BSlack, and B2Slack (see Section 2.4). We 
tried using each of these heuristics in two 
ways, taking the variable with either the 
maximal or minimal heuristic value. For com-
parison purposes we also computed results us-
ing no heuristic. Results using Greater Slack 
value ordering (in blue) and no-heuristic value 
ordering (in red) with a 30 second time-out 
follow on the graph below. 

An obvious first conclusion is that all of 
the “Greatest” heuristic variable choosing 
methods (MOSG, BSLACKG and 
B2SLACKG) perform extremely poorly, 
greatly under-performing the baseline no-
heuristic algorithm. 

The effect of the “Least” heuristic variable 
choosing methods is less clear-cut. It is nota-

ble that in the results represented in the graph 
above, all three “intelligent” heuristics 
(MOSL, BSLACKL, B2SLACK) are actually 
out-performed by varNONE when no value 
ordering heuristic is used. However, when the 
smarter valSG value ordering heuristic is used, 
all three of these heuristics prove their worth. 
To better compare the heuristics, let us look at 
some specific CPU time figures averaged 
across all problems/seeds: 

 

Avg CPU 
Time for 
valSG 

Avg CPU 
Time for 
valNONE 

Avg CPU 
Time for 
valSL 

varB2SLACKL  0.001673843  0.51964482  0.381577602 
varBSLACKL  0.145988742  0.657223548  0.348550018 
varMOSL  0.149682745  0.570096953  0.314295552 

The most disappointing result is definitely that 
of BSlack: it pretty much consistently fails to 
even perform as well as regular Slack. This 
could conceivably be an artifact of our results 
runs or our implementation, but at least for our 
current implementation BSlack does not pro-
vide the performance that we had hoped for. 

B2Slack, on the other hand, gives scorch-
ing performance when coupled with certain 
value ordering heuristics (such as valSG). To 
get a better idea of this performance, let us 
look at the maximal values across all 60 prob-
lems and 10 seeds of certain metrics for these 
three solvers on the next page. 
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Label 
Counter 

Unlabel 
Counter 

CPU Time 
(seconds) 

 Restart 
Counter 

varB2SLACKL‐
propC‐valSG 

225  0  0.004372  0 

varBSLACKL‐
propC‐valSG 

920,882  483,735  15.79  13 

varMOSL‐
propC‐
valB2SG 

651,003  381,450  9.99  9 

We note that MOS and BSlack can solve 
every problem in around 10 seconds / restarts. 
But B2Slack solves every problem in time on 
the order of the millisecond. This is clearly 
because the algorithm basically never has to 
unlabel.  It would therefore seem that B2Slack 
variable ordering, coupled with valSG or 
valB2SlackG (see results in Annex) value or-
dering, is at the very least extremely well tai-
lored to this class of job shop problem. The 
heuristic apparently finds a nigh-on perfect 
ordering of variables, thus avoiding backtrack-
ing. 

As an aside note, to do full justice to our 
heuristics we re-ran all the algorithms which 
had had time-outs with a 30-second time limit 
with a full 10-minute time limit. The results 
are included in the Annex, but the primary 
conclusion is that whatever the value ordering 
used, all of our algorithms excluding the 
“Greater” heuristic value variable choosing 
methods were able to finish every problem in 
less than 105 seconds. The “Greater” heuristic 
value variable choosing methods still timed 

out in most cases on some of the problems. 

5.3 Value ordering heuristics 
While we were initially primarily concerned 
with the use of our slack-based heuristics for 
variable ordering, they can of course equally 
well serve as heuristics for ordering the two 
potential values of case 4 variables. To evalu-
ate the performance effects of the heuristics 
for value ordering, we fixed the variable or-
dering heuristic (to MOSL) and computed av-
erage run-times. The graph below synthesizes 
the results. 

The primary observation is that the effects 
of the “Greater” and “Lesser” heuristic value 
choosing methods are reversed relative to the 
variable ordering case: for values, it is far bet-
ter to choose the value with highest slack. This 
is not unsurprising, as having more slack 
means more available time between the pair of 
operations of the variable, which intuitively 
indicates less chance of having to backtrack. 

There is actually very little to distinguish 
performance-wise between the Slack, BSlack 
and B2Slack value ordering heuristics. They 
are virtually identical in performance. This is 
understandable: unlike having to choose a 
variable from hundreds of possibilities, one 
has a maximum of two possibilities for pick-
ing a value, and the three heuristic functions 
are all reasonably similar. 
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5.4 Random restarts 
We observed massive variance in run-time for 
different random seeds in our initial algorithm 
implementation. Indeed, the exact same algo-
rithm could time out on a problem, and then 
solve the same problem in seconds on the next 
run. This was both a serious problem and a 
great opportunity. We hypothesized that we 
could leverage this variance by using a restart 
mechanism to both decrease variance and im-
prove average run-time. 

Our random restart method is described in 
Section 3.6. To isolate and evaluate its impact 
on over-all average performance, we ran one 
of the weaker versions of our algorithm (with 
no variable or value heuristic usage) on the 
full problem set with 10 seeds, with and with-
out random restarts. Here are the (average) re-
sults for a 60 second timeout: 

 
Label 
Counter 

Unlabel 
Counter 

CPU Time 
(seconds) 

Std Dev of 
CPU Time 
Normalize 
by Avg 

varNONE‐
propC‐
valNONE‐
NORESTART 

462,050  282,410  1.63  4.21 

varNONE‐
propC‐
valNONE‐
RESTART 

75,125  44,848  0.319  2.89 

These figures clearly show that our restart 
mechanism has a huge impact on run-time 
performance, improving speed by almost a 
factor of 10. This is obviously due to a corre-
sponding proportional decrease in the number 
of label and unlabel operations. 

Furthermore, these averages do not show 
the effect of restarts on the number of prob-
lems solved. Indeed, on this particular run the 
varNONE-propC-valNONE-NORESTART 
algorithm timed out on 5 of the 60 problems, 
while varNONE-propC-valNONE-RESTART 
finished them all. These results are unsurpris-
ing given how widely our JSS’s performance 

varies depending on the initial randomization. 
Our restart mechanism therefore strongly 
mitigates the “luck” factor in solving the prob-
lems.  

5.5 Variance 
The random restart mechanism clearly has a 
strong smoothing effect on the variance of our 
algorithms’ run-time performance. To go be-
yond this basic initial analysis, and given that 
we now always use the restart mechanism, we 
computed the standard deviation of CPU time 
for all our algorithms. To account for the fact 
that the different algorithms have very differ-
ent expected run-times, we normalized the 
standard deviation relative to the expected 
value. 

The full results are given in the Annex, but 
the analysis is complex. Indeed, it is hard, and 
probably illusory, to discern “winners” and 
“losers” in the variance figures, and no heuris-
tics stand out as having a particular consistent 
effect. To evaluate the over-all trend of vari-
ance relative to average performance, consider 
the scatter plot on the top of the next page, 
which plots average CPU time in seconds on 
the x-axis and normalized standard deviation 
on the y-axis. 

Our more pattern-minded readers will note 
that the Normalized Standard Deviation pretty 
much follows a hyperbolic curve relative to 
the average run-time, irrespective of the nature 
of the algorithm and heuristics. This would 
seem to indicate that our random restart 
mechanism has smoothed out all important 
variance distinctions between our algorithms. 
The two notable outliers and exceptions to this 
are visible at the origin of the plot: our two 
best-performing algorithms (varB2SLACKL-
propC-valB2SG and varB2SLACKL-propC-
valSG), are so good at all the problems (basi-
cally never unlabeling) that they also have 
very low variance. 
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6 Future work 

6.1 Smarter backtracking 
In our current search implementation we use 
the most primitive form of chronological 
backtracking. Just as regular CSP solvers can 
be greatly improved by upgrading chronologi-
cal backtracking to say Conflict-Directed 
Backjumping, our job shop solver could po-
tentially also greatly benefit from more so-
phisticated dependency-directed backtracking.  

Advanced backtracking techniques are 
discussed in Xiong, Sycara & Sadeh [2]. They 
propose three backtracking related methods: 

• Dynamic Consistency Enforcement 
(DCE): a selective dependency-
directed scheme that dynamically 
focuses its effort on critical resource 
sub-problems. 

• Learning From Failure (LFF): an 
adaptive scheme that suggests new 
variable orderings based on earlier 
conflicts. 

• Heuristic Backjumping (HB): a 
scheme that gives up searching areas 
of the search space that require too 
much work.  

The authors judge that a complete depend-
ency-directed backtracking scheme would be 
too expensive computationally, and thus use 
DCE, which only checks consistency on sub-
groups of operations which they call “Danger-
ous Groups”. The determination of these Dan-
gerous Groups is done dynamically, and is an 
integral part of the algorithm. 

Given the size of our problems (and the 
increase in computational power since 1992!), 
it seems likely that a full dependency-directed 
backtracking scheme is feasible in our case. 
By analogy with the regular CSP CBJ case, 
we need to maintain a conf-set for each vari-
able, which is the set of past levels with which 
the variable xij conflicts with. 

For our unlabel function, we can act just as 
in regular CBJ: we simply backjump to the the 
most recently assigned variable h in the cur-
rent variable i’s conf-set, empty the conf-sets 
of the variables in between (and restore their 
domains), and add the variables in i’s conf-set 
to that of h. 

For the label function the changes are not 
so obvious, as it is not trivial to determine 
which previously assigned variable is respon-
sible for an inconsistency with the current 
variable. It seems that it would be more effi-
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cient to do an FC-CBJ type approach to filling 
in the conf-sets: whenever we perform con-
straint propagation, we work out which vari-
ables are having their domains reduced (from 
2 to 1, otherwise we would get an inconsis-
tency anyway), and add the variable currently 
being assigned to these variables’ conf-sets. 

There are two possible ways to work out 
the variables whose domain is affected by the 
current assignment:  

• During the constraint propagation, by 
considering, at each operation visited 
by the propagation, the set of variables 
linked to this operation, and evaluating 
whether each of these variables is 
going to go from case 4 to case 1/2 (in 
which case we add the freshly assigned 
variable to that variable’s conf-set). 

• After the end of the constraint 
propagation, by simply considering 
every unassigned variable and seeing 
whether it has switched from case 4 to 
case 1/2.  

Both methods would imply a lot of extra 
work/time, but they would allow us to identify 
the root cause of a conflict further down the 
line. Due to the speed at which our best 
solvers can solve our given scheduling prob-
lems, we believe that any smart backtracking 
method would spend too much time maintain-
ing data structures and would not make up for 
the lost time in significant backjumps. Never-
theless, the methods would probably be help-
ful in more difficult scheduling problems. 

6.2 Bslack 
Another area which we wish to look into is 
experimenting with the B2Slack heuristic 
function. Indeed, the success we had with 
B2Slack heuristic variable ordering with just 
the base constants provided in Smith & 
Cheng’s paper indicates that even better per-
formance could potentially be obtained by 
tuning the function’s parameters. A basic hill-
climbing approach (or at the very least grid 

search) could easily determine “optimal” val-
ues for the constants a and b. 

6.3 Case 1/2 & 4 Sets 
As noted in section 3.7, we do not maintain 
separate arrays for the unlabeled variables of 
each possible case. Maintaining separate ar-
rays instead of a single array could potentially 
increase performance by decreasing the 
amount of time required to determine if a case 
1/2 variable exists. 
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