
[1]

CS 227 Programming Assignment 3:

Job Shop Scheduling

Todd Sullivan
todd.sullivan@cs.stanford.edu

Harry Robertson
harry.robertson@gmail.com

Pavani Vantimitta
pavani@stanford.edu

1 Introduction
Job shop scheduling problems arise in various
areas of computing and real-life domains. To
formalize a typical job shop scheduling prob-
lem, one considers a set of operations, which
must be executed in a specified time window.
The problem contains precedence constraints
(i.e. operation A must occur before operation
B) and resource constraints (i.e. operation A
needs exclusive use of resource R during its
execution). These scheduling problems are
NP-complete.

One can translate a JSS problem into a
temporal constraint satisfaction problem, for
which the variables are the time points for the
tasks involved and the constraints are prece-
dence and time-window constraints.

In this paper we consider a set of 60 prede-
fined JSS problems (each with 50 operations
and 5 resources), which our algorithms aim to
solve by scheduling the given set of operations
according to the given set of constraints.

We start off by translating the base prob-
lem as a temporal problem and evaluating the
earliest and latest start times for each of the
operations. We use the Bellman-Ford algo-
rithm to do this initialization. We then per-
form constraint-based search to order the op-
erations that share resource needs, using
Slack-based ordering heuristics to select
which variables/values to pick. The resource
constraints are satisfied by using a chrono-
logical backtracking search procedure to
search for a consistent solution. We perform
constraint propagation at each search node, ei-
ther in the distance graph or in the constraint
graph.

2 Algorithms

2.1 Bellman-Ford Algorithm
The Bellman-Ford algorithm computes the
single-source shortest paths in a weighted dis-
tance graph. Unlike Dijkstra’s algorithm,
Bellman-Ford can be used in the presence of
negative cycles, which is a necessary property
for the problems at hand. Indeed, a temporal
problem is considered to be consistent only if
it does not have a cycle of negative weight,
and Bellman-Ford recognizes this case.

The Bellman-Ford algorithm takes in a
graph, and progressively computes the short-
est paths from the given source node to the
other nodes. At each iteration of its primary
loop, Bellman-Ford attempts to “relax” each
edge u-v, i.e. to see if there is a shorter path to
v through the edge u-v. Bellman–Ford runs in
O(V.E) time, where V and E are the number of
vertices and edges respectively (at each itera-
tion it relaxes all edges, and iterates this up to
|V| - 1 times). The repetitions allow minimum
distances to accurately propagate throughout
the graph, since in the absence of negative cy-
cles the shortest path can only visit each node
at most once (and negative cycles can be de-
tected after the maximum number of itera-
tions).

2.2 Ordering of Operations
Every task that has to be scheduled has an ear-
liest start time (est), a latest start time (lst) and
a processing time (p). There are four possible
cases for ordering two given operations. When
esti + pi ≤ lstj and estj + pj > lsti , then opera-
tion i must necessarily be scheduled before

[2]

operation j (Case 1). Case 2 is the reverse,
when operation j necessarily precedes opera-
tion i. Case 3 is when there is a conflict be-
tween the two operations (in which case we
need to backtrack). Case 4 is when either or-
dering is possible.

Constraint based analysis is used to rule
out orderings in cases 1, 2 and 3; in these
cases we continue by simply choosing the ob-
vious ordering (or by backtracking in case 3).
Slack based heuristics are used to decide
which ordering to pick in case 4.

2.3 Search Procedure
We use chronological backtracking search to
search for a solution satisfying the resource
constraints. We first start by initializing using
the Bellman-Ford algorithm discussed in Sec-
tion 2.1. Then there are two functions, label()
and unlabel(), that are important.

In the label function we select a value
from the domain and propagate it through the
graph; if it turns out to be inconsistent with the
graph then we undo the propagation, unassign
the value and delete it from the domain. We
move on to try a different value from the do-
main until we find a value that is consistent or
exhaust the domain. If we find a value that is
consistent it is pushed into the assigned stack
and the next variable is picked up. If no con-
sistent value is found for that variable then we
return false. Each variable is a pair of opera-
tions that both require the same resource. The
domains of each variable contain a maximum
of two values, one for each possible ordering
of the pair of operations.

In the unlabel function we remove the in-
consistent value for the variable, undo the
propagations for that value and update the
domain for that variable.

2.4 Variable Ordering Heuristic
A variable is a set of operations i, j that share
a resource need. We discussed four possible
cases in the ordering of two operations in Sec-
tion 2.2. The variable ordering heuristic helps

select what orderings are to be dealt with first.
Cases 1 and 2 are picked first and then Case 4.
Case 1 and 2 can be resolved directly by
choosing the only possible corresponding or-
dering. Case 4 needs to be handled differently:
we use temporal slack to decide among the
different possible variable pairs.

The slack when ordering i before j is de-
fined as lstj – (esti +pi) and when ordering j
before i is lsti – (estj + pj). The minimum
overall slack between these two decisions is
the minimum between the two slack values.

There is another improved version of the
slack heuristic called the BSlack heuristic. In
this we calculate a and b as the minimum and
maximum values of the slack between the de-
cision to have i precede j and j precede i. Then
we calculate S as (a/b). Then Bslack(i j) =
Slack(i j)(S-1/a + S-1/b) and Bslack(j i)
= Slack(j i)(S-1/a + S-1/b).

Finally, we also considered a slightly dif-
ferent version of BSlack, which we call
B2Slack, which is that given in the original
Smith & Cheng paper [1]. Instead of using a
and b as the negative inverse powers of S, we
simply use constants (we used the values 2
and 3, which Smith & Cheng report to be the
best pair).

2.5 Value Ordering Heuristic
In case 4 we need to choose between the two
potential orderings, i j and j i. We can
use the Slack values of the two potential or-
derings as a heuristic for this, by taking the
ordering with the highest slack (or alterna-
tively the lowest). Between the variable and
the value ordering heuristics we should be
able to solve most problems with few back-
tracks.

2.6 Constraint Propagation
We do constraint propagation when we choose
a particular ordering in the label function. We
propagate the choice through the graph to see
if it holds consistently through the graph. This
can be done in two ways. One is by continuing

[3]

the Bellman-Ford algorithm after each new
operation ordering is chosen. The second way
is to calculate the new est and lst values for
the new ordering and then propagate the est
forward through the outward edges defined by
the ordering constraints and lst backward
through the inward edges defined by the or-
dering constraints. For example consider
choosing i j then estj = max(estj, esti + pi)
and lsti = min(lsti, lstj – pi). We then propa-
gate estj forward through constraints j k
and propagate lsti backward through con-
straints k i. An inconsistency is detected
when esti > lsti for any i.

3 Optimizations
Caching and other optimizations are essential
for creating usable job shop scheduling
solvers. Like our previous projects' solvers,
we developed our algorithms with efficiency
in mind. Our optimizations include managing
our own memory for most data structures (no
STL Vectors), quick lookup structures for
variables and operations, intelligently updat-
ing slacks and cases, tuning the temporal rea-
soner, random restarts, and several other
memory allocation tweaks. Unless otherwise
noted, all results in this section used our ex-
perimental method as detailed in Section 4

3.1 Memory Management
As we have shown with our previous solvers,
using our own memory management tech-
niques through our superArray class instead of
the C++ Standard Template Library (STL)
Vector class can result in a measurable per-
formance gain in the actual problem domain.
We again chose to use our superArray class,
and will only provide a brief overview of the
discussion from our previous two projects.

As a reminder, through testing with our
SAT and CSP solvers we found that our su-
perArray is 1.4 times faster at reads and 1.7
times faster at writes than the Vector Op
method and 5.5 times faster at reads/writes
than the Vector At method. (The Vector At

method includes out-of-bounds checking,
while superArray and Vector Op do not.) Ta-
ble 3.1a summarizes these results.

Table 3.1.a: TestVector.h Computation

Time Relative to superArray

 Reads Writes
superArray 1.0 1.0
Vector Op 1.4 1.7
Vector At 5.5 5.5

In our previous crossword puzzle domain,

we were able to calculate the real-world per-
formance gains of using superArray through a
preprocessor command called SUPERAR-
RAY_TYPE in data_structures.h of our source
that effectively gave us the ability to decide at
compile time whether to use the Vector Op
method or our superArray method. In the
crossword puzzle domain we showed that our
superArray is 1.02 times faster than using
Vector Op. Using our read/write results from
Table 3.1a we were also able to estimate that
our superArray would be 1.18 times faster
than the Vector At method. We unfortunately
could not use our preprocessor method to ob-
tain exact results of using Vector At because
the switch took advantage of the fact that the
superArray and Vector Op methods both use
brackets [] to access the array members.
These results are summarized in Table 3.1b.

Table 3.1.b:

Crossword CSP Computation
Time Relative to superArray

superArray 1.0
Vector Op 1.02
Vector At 1.18*
*Estimated using relative read /

write times from Table 3.1.a.

Since we developed our schedulers using
the superArray class, we can again measure
real-world performance gains over using Vec-
tor. To add to the usefulness of this exercise,
and to increase our productivity, we also

[4]

measured the real-world performance gains
over using a method similar to Vector At. We
added an option to SUPERARRAY_TYPE
that allows us to use the superArray class with
out-of-bounds checking. This not only allows
us to measure the real-world performance hits
brought about by out-of-bounds checking, but
it also eliminated many development bugs and
increased productivity because we could pause
the program in our debugger whenever an out-
of-bounds error occurred.

We measured performance by turning all
heuristics off, turning random restarts off, set-
ting the max time to ten seconds, and execut-
ing the solver with each of the various settings
on problem 3 (sadeh3.fol). With these settings,
the solver was not be able to find a solution
before the timeout. For each setting of SU-
PERARRAY_TYPE, we executed the solver
using ten different seeds and we recorded the
amount of times that the solver attempted to
label a variable. Since we used the same ten
seeds for all three settings of SUPERAR-
RAY_TYPE, the solvers made the same deci-
sions in the same order and the only difference
was speed.

Table 3.1.c shows the results of this ex-
periment. superArray is again 1.02 times
faster than using the Vector Op method. su-
perArray is 1.16 times faster than using su-
perArray with out-of-bounds checking, which
is similar to our estimated 1.18 times faster in
the crossword puzzle domain.

Table 3.1.c:

JSS Computation
Time Relative to superArray

superArray 1.0
Vector Op 1.02
Vector At* 1.16

*Actually superArray
with out-of-bounds checking.

Since we do not require array resizing, the

only advantage of using Vector is the out-of-
bounds checking in At. Now that we have in-
cluded that functionality into our SUPERAR-

RAY_TYPE switch, we have no real reason to
use Vector. In fact, we are much better off us-
ing superArray because we can use out-of-
bounds checking during development and eas-
ily strip the out-of-bounds checking from the
program when compiling for a release.

3.2 Quick Lookups
Data structures are critical for optimizing any
algorithm. In the job shop scheduling domain,
it is critical that our algorithms can loop
through all of the operations that have an in-
coming or outgoing edge with respect to some
given operation. Our algorithms also require
an efficient method for looping over the set of
variables that contain a given operation. To
handle these needs, our Operation class in-
cludes the arrays outEdges, inEdges, and vari-
ablesIn, which contain the operations that
must happen before the given operation, the
operations that must happen after the given
operation, and the variables that the given op-
eration exists in. The importance of these data
structures will become apparent in the remain-
ing sections of Section 3.

3.3 Updating Slacks and Cases
Inefficient slack and case updates for the vari-
ables can have an enormous impact on speed.
After each propagation while labeling and af-
ter undoing a propagation while unlabeling,
one must update the slack values and cases of
the variables. Through rough experiments we
found that naively recomputing all
slacks/cases drastically decreases perform-
ance.

While propagating an ordering choice, we
keep track of all of the operations that have a
change in earliest start time or latest start time.
If the propagation did not find an inconsis-
tency, we then need to update all of the slack
values. We do this by using the data structures
in Section 3.2 and only recomputing the slacks
and case values for variables that contain an
affected operation. We found that this small
change makes the overall program 1.05 times

[5]

faster than recomputting the slacks/cases for
all unlabeled variables.

We use the slack values to calculate the
case values. If we are using an additional heu-
ristic such as Bslack then we only update the
Bslacks if the variable is in case 4 because we
only use the heuristic when comparing case 4
variables.

If any of the variables are found to be in
case 3 then we immediately unpropagate and
treat the labeling attempt as a failure. We do
not do this by moving to the unlabel function.
Instead, we treat it in the same way as if the
propagation had failed (we simply remove the
value from the variable's domain). This single
optimization, coupled with the random restarts
in Section 3.6, makes our algorithm fast
enough to solve all 60 problems with all heu-
ristics off in a total cumulative time of around
35 seconds. Removing either this optimization
or the random restarts makes the solver spend
much more time searching for a solution.

3.4 Memory Allocation and Quick
Insertions

As we noticed when creating our SAT and
CSP solvers, memory allocation can be costly.
To reduce the amount of memory allocation
required during the search, we allocate all data
structures before starting the label/unlabel
loop. This includes allocating enough space in
the inEdges and outEdges arrays of each op-
eration so that each operation can potentially
store all other operations in each array without
resizing. When adding an edge to an operation
during propagation, we simply treat the edge
arrays as stacks and push the new operation
onto the top by using the current length of the
array as the index into the array. When remov-
ing an edge while undoing a propagation, we
simply pop the operation off of the stack by
decrementing the array's length variable. We
also preallocate all arrays that are used by the
propagator to store the changed start times
during any given propagation. Additionally,
we make every attempt to use pointers and not

invoke a copy constructor anywhere in the
solver's code.

3.5 Temporal Reasoning

3.5.1 Temporal problem transforma-
tion

In order to even begin solving the job shop
scheduling problem, we first transform it into
a temporal scheduling problem and determine
the earliest and latest possible start-times for
each of the operations by running a shortest-
path algorithm on the distance graph. For this
initial transformation we consider the length,
before, release, and due job shop constraints,
but not the needs constraints (which are the
primary consideration of the subsequent
search phase).

As the temporal-problem distance-graph
based approach uses time points (and not time
intervals) as variables, we initially used as
variables:

− the start time of each operation
− the end time of each operation
− the time origin

This naïve approach results in 2*n+1 variables
(where n is the number of operations). How-
ever, since the job shop problems specify a
length for each operation, it is clear that hav-
ing separate variables for the start and end of
each operation is redundant (indeed, the arcs
between the start and end variables for each
operation in our naïve implementation were
actually just specifying that end = start +
length).

We can therefore safely remove all the
end-time variables, practically halving the
number of variables and removing the length-
constraint arcs (of course, the length con-
straints are implicitly contained in the other
values of the other arcs).

[6]

3.5.2 Bellman-Ford optimization
As for every graph-based algorithm imple-
mentation, a key factor for the performance of
our Bellman-Ford implementation is the
choice of the data structure used to represent
the graph. For obvious efficiency reasons, we
represented the nodes as integers indexed
from 0, which allows us to index the node di-
rectly into C arrays.

To capitalize on this we naively repre-
sented the edge set as an n*n 2-dimensional
array (where n is the number of nodes). The
drawback to this approach is that to iterate
over all edges, one actually has to iterate over
every cell in the matrix, and check if there is
an edge or not for each cell. This is clearly in-
efficient if the edge matrix is at all sparse.

To improve on this we changed the edge
set representation to just be a stack of edge
structs, which obviously allows us to iterate
over all the edges in time linear in the number
of edges. As this is the only type of access
Bellman-Ford makes to the edges, this data
structure is “optimal” in time complexity for
the case at hand. This change yielded a 4x
speed-up in our over-all system (when using
Bellman-Ford for constraint propagation as
well), which strongly justifies post-hoc the op-
timization.

We further optimized the algorithm by
stripping out all elements not relevant to our
usage: in particular, as we never need to actu-
ally generate the shortest paths themselves, the
П array of back-pointers is useless here.

3.5.3 Constraint propagation in the
distance graph

After the initial earliest/latest start-time de-
termination step, the Bellman-Ford component
can also be used as a sub-routine for constraint
propagation in the search phase. The simplest
way to do this is simply to add an edge corre-
sponding to the new constraint to the distance
graph, and then run Bellman-Ford from
scratch to determine the shortest paths. This is
obviously extremely slow and inefficient.

We can improve on this by observing that
adding a new edge to the distance graph can
only decrease shortest path distances, as all
the former shortest paths are still valid. There-
fore we can add the new edge and just con-
tinue where the last run of Bellman-Ford “left
off” (i.e. starting off with the previously gen-
erated d array). Empirically this yields roughly
a 10x speed-up relative to fully re-running
Bellman-Ford. However, a brief theoretical
analysis reveals that the speed-up is very de-
pendent on the sparsity of the graph and the
position of the new edge relative to source.
And in the worst case, with a cheap new edge
adjacent to the source, this method degrades to
fully re-running Bellman-Ford. We suspect
that there is a more sophisticated and efficient
way of propagating constraints in the distance
graph, and will look further into this in the fu-
ture.

Of course, another problem with this ap-
proach is how to efficiently “unpropagate” a
formerly propagated constraint. The most ba-
sic solution is simply to remove the corre-
sponding edge from the distance graph and
fully re-run Bellman-Ford. However, funda-
mentally we simply want to restore the “state”
of Bellman-Ford to what it was before the bad
constraint propagation. And the state of Bell-
man-Ford is nothing more than the d shortest-
path-distance array. We therefore solved the
problem in a simple time-efficient memory-
inefficient manner: whenever we propagate a
constraint, we back up the former d array onto
a stack. Then if we want to unpropagate a
constraint, we just remove the corresponding
edge, pop the former d array from the stack
and set it back into Bellman-Ford's state.

3.6 Restart Timeouts
We found that many of our algorithms were
susceptible to bad luck on their initial seed
values for the random number generator. We
randomize our choices by randomly shuffling
the array of variables before entering the la-
bel/unlabel loop and after a restart is triggered.

[7]

We found that implementing continual, quick
restarts significantly decreases the computa-
tion time required to find schedules.

An obvious insight from these observa-
tions is that periodically restarting with a re-
shuffled ordering in which equally good vari-
ables are chosen for labeling could drastically
improve overall performance. Similar to our
restart timeouts for our CSP solvers, we im-
plemented an increasing restart timer that al-
lows the algorithm additional time between
restarts as the number of restarts increases.
We found that rapid restarts worked best.

Thus all of our solvers have the execution
length of the first run set to one second, with a
multiplier of 1.025. The first run is allowed to
execute for 1.0 seconds, the second run for
1.025, the third for 1.05, and so on. Unlike our
CSP solvers, we did not include a method for
ensuring deterministic behavior given the
same initial seed. We did not include this fea-
ture because in our previous project we found
it to be hindering in our CSP solver perform-
ance.

3.7 Variable Ordering
When not using any heuristic for choosing
which variable to label next, one would gener-
ally think that choosing all case 1 and case 2
variables before case 4 variables would be an
obvious smart selection choice. We found that
with our solvers this is not the case. Quite sur-
prisingly, choosing the first variable in the ar-
ray of unlabeled variables performed better
than the previously mentioned selection crite-
rion.

We compared the two selection methods
on Problem 3 (sadeh3.fol), which is one of the
more difficult problems for our solvers to
solve. We ran both selection methods with 10
different seeds, using the random restart set-
tings described in Section 3.6 and using no
special heuristics. Neither solver experienced
a timeout. In terms of the average CPU time
for each solver averaged over all 10 seeds, re-
turning the first variable was 40 times faster

than choosing all case 1 and case 2 variables
before considering case 4 variables.

The reason for this massive speed differ-
ence might be that we do not maintain sepa-
rate sets for the unlabeled variables. We keep
a single array that contains all unlabeled vari-
ables. Thus in order to ensure that we choose
all case 1 and case 2 variables first, we always
have to loop through the entire array of unla-
beled variables. This loop could be the cause
of the slowdown.

To remedy the situation, we could main-
tain two sets of unlabeled variables and move
the variables amongst the sets when their
slacks/cases are updated. If we had separate
sets then we would not need the loop. Unfor-
tunately, we could not pursue this further due
to time constraints.

4 Experimental Method
Our experimental method is almost identical
to our previous projects. We conducted all of
our experiments on the Pod cluster. The Pod
cluster contains Dell Precision 390s, each with
a 2.4 GHz Core 2 Duo and 2 GB of RAM
running Ubuntu 7.04. All results in Section 5
are from running each solver on the 60 sched-
uling problems using 10 different seeds for the
random number generator. We used the same
seeds as in our CSP solvers. These seeds were
chosen by seeding the random number genera-
tor with the clock's time and then printing out
10 random numbers. The readme included
with the source describes how to specify your
own seed or which of our 10 seeds to use.

4.1 Naming Conventions
In all results we refer to our constraint-graph
propagator as C and our distance graph propa-
gator as BF. Our variable ordering heuristics
include NONE, BSLACKL, B2SLACKL,
MOSL, BSLACKG, B2SLACKG, and
MOSG. Our value ordering heuristics include
NONE, SG, SL, BSG, BSL, B2SG, and B2SL,
with SG and SL using the slack values, BSG
and BSL using the Bslack values, and B2SG

[8]

and B2SL using the Bslack values with pa-
rameters of 2.0 and 3.0 as described in the
Smith and Cheng 1993 paper. An "L" at the
end of a name indicates that we are minimiz-
ing the value while a "G" indicates that the
heuristic is maximizing the value ("L" and
"G" were chosen due to the use of the less
than and greater than operators). The naming
convention for our solvers is var?-prop?-val?
where the question marks are replaced with a
propagator or heuristic from the previous lists.

Through all of our experiments we gath-
ered results for all combinations. We imposed
a timeout limit of 30 seconds for each sched-
uling problem. Our best solvers were able to
solve all 60 scheduling problems within the 30
second timeout constraint for all seed values.
Several solvers were even able to solve all 60
problems in a cumulative time of 30 to 35
seconds. Additionally, we ran all solvers that
experienced timeouts from this initial run a
second time with the same seeds and a 10
minute timeout limit.

4.2 Our Performance Metrics
We track seven metrics: Die EST Counter,
Die LST Counter, Label Counter, Unlabel
Counter, CPU Time, Real Time and Restart
Counter. Die EST Counter and Die LST
Counter record the amount of times that a
propagation detects an inconsistency while
propagating the earliest start times or latest
start times respectively. Label Counter is the
amount of times we attempt to label a variable
and Unlabel Counter is the amount of times
we unlabel a variable. Restart Counter is the
number of times the solver restarts the search
and reshuffles the ordering of the variables in
the unlabeled variables array.

The CPU Time and Real Time are both in
seconds. Since our CPU timer is less reliable
for runtimes close to zero, we record the Real
Time for both CPU Time and Real Time when
the reported CPU Time is less than one. CPU
Time and Real Time do not include the proc-
essing time for reading in the problems, but do

include the time spent preallocating the
solver's memory. The timing starts when the
function Scheduler::scheduleProblem is
called.

5 Progressive results analysis
As we progressively improved our algorithms’
performance, we juggled several different de-
cision factors and were continually re-
evaluating our performance to identify poten-
tial improvements. For example, our introduc-
tion of a random restart mechanism was a re-
action to the extremely high variance in our
run-times and success rates. In order to avoid
an excessively long narrative, we shall evalu-
ate in this section certain key areas of the per-
formance and behavior of our final implemen-
tation.

5.1 Constraint propagation methods
In our earlier naïve implementations, we
avoided performing proper constraint propa-
gation by simply running Bellman-Ford from
scratch in the distance graph after each vari-
able assignment. Obviously this resulted in
atrocious performance. Subsequently, we em-
ployed two constraint propagation methods:
propagation in the distance graph through con-
tinued Bellman-Ford, and propagation in the
constraint graph following the rules discussed
in class.

While the modified Bellman-Ford ap-
proach is better than nothing, and benefits
from our optimizations to our Bellman-Ford
implementation, it is dominated by the con-
straint graph propagation approach (referred to
as “propC” in the following results). Indeed,
the two approaches give the exact same final
results, but our evaluation showed that the
constraint graph method is approximately 23
times faster than the distance graph method.
This explains why in all subsequent results we
will primarily use constraint graph propaga-
tion.

[9]

5.2 Variable ordering heuristics
The most significant question mark in our
minds when we started evaluating our algo-
rithms was on the effect of the variable order-
ing heuristics. Indeed, Dynamic Variable Or-
dering proved hugely effective for CSP solv-
ing, so Case 4 variable ordering with a good
heuristic promised to be effective for JSPs as
well.

We evaluated three heuristics: regular
Slack (referred to as MOS in the results),
BSlack, and B2Slack (see Section 2.4). We
tried using each of these heuristics in two
ways, taking the variable with either the
maximal or minimal heuristic value. For com-
parison purposes we also computed results us-
ing no heuristic. Results using Greater Slack
value ordering (in blue) and no-heuristic value
ordering (in red) with a 30 second time-out
follow on the graph below.

An obvious first conclusion is that all of
the “Greatest” heuristic variable choosing
methods (MOSG, BSLACKG and
B2SLACKG) perform extremely poorly,
greatly under-performing the baseline no-
heuristic algorithm.

The effect of the “Least” heuristic variable
choosing methods is less clear-cut. It is nota-

ble that in the results represented in the graph
above, all three “intelligent” heuristics
(MOSL, BSLACKL, B2SLACK) are actually
out-performed by varNONE when no value
ordering heuristic is used. However, when the
smarter valSG value ordering heuristic is used,
all three of these heuristics prove their worth.
To better compare the heuristics, let us look at
some specific CPU time figures averaged
across all problems/seeds:

Avg CPU
Time for
valSG

Avg CPU
Time for
valNONE

Avg CPU
Time for
valSL

varB2SLACKL 0.001673843 0.51964482 0.381577602
varBSLACKL 0.145988742 0.657223548 0.348550018
varMOSL 0.149682745 0.570096953 0.314295552

The most disappointing result is definitely that
of BSlack: it pretty much consistently fails to
even perform as well as regular Slack. This
could conceivably be an artifact of our results
runs or our implementation, but at least for our
current implementation BSlack does not pro-
vide the performance that we had hoped for.

B2Slack, on the other hand, gives scorch-
ing performance when coupled with certain
value ordering heuristics (such as valSG). To
get a better idea of this performance, let us
look at the maximal values across all 60 prob-
lems and 10 seeds of certain metrics for these
three solvers on the next page.

[10]

Label
Counter

Unlabel
Counter

CPU Time
(seconds)

 Restart
Counter

varB2SLACKL‐
propC‐valSG

225 0 0.004372 0

varBSLACKL‐
propC‐valSG

920,882 483,735 15.79 13

varMOSL‐
propC‐
valB2SG

651,003 381,450 9.99 9

We note that MOS and BSlack can solve
every problem in around 10 seconds / restarts.
But B2Slack solves every problem in time on
the order of the millisecond. This is clearly
because the algorithm basically never has to
unlabel. It would therefore seem that B2Slack
variable ordering, coupled with valSG or
valB2SlackG (see results in Annex) value or-
dering, is at the very least extremely well tai-
lored to this class of job shop problem. The
heuristic apparently finds a nigh-on perfect
ordering of variables, thus avoiding backtrack-
ing.

As an aside note, to do full justice to our
heuristics we re-ran all the algorithms which
had had time-outs with a 30-second time limit
with a full 10-minute time limit. The results
are included in the Annex, but the primary
conclusion is that whatever the value ordering
used, all of our algorithms excluding the
“Greater” heuristic value variable choosing
methods were able to finish every problem in
less than 105 seconds. The “Greater” heuristic
value variable choosing methods still timed

out in most cases on some of the problems.

5.3 Value ordering heuristics
While we were initially primarily concerned
with the use of our slack-based heuristics for
variable ordering, they can of course equally
well serve as heuristics for ordering the two
potential values of case 4 variables. To evalu-
ate the performance effects of the heuristics
for value ordering, we fixed the variable or-
dering heuristic (to MOSL) and computed av-
erage run-times. The graph below synthesizes
the results.

The primary observation is that the effects
of the “Greater” and “Lesser” heuristic value
choosing methods are reversed relative to the
variable ordering case: for values, it is far bet-
ter to choose the value with highest slack. This
is not unsurprising, as having more slack
means more available time between the pair of
operations of the variable, which intuitively
indicates less chance of having to backtrack.

There is actually very little to distinguish
performance-wise between the Slack, BSlack
and B2Slack value ordering heuristics. They
are virtually identical in performance. This is
understandable: unlike having to choose a
variable from hundreds of possibilities, one
has a maximum of two possibilities for pick-
ing a value, and the three heuristic functions
are all reasonably similar.

[11]

5.4 Random restarts
We observed massive variance in run-time for
different random seeds in our initial algorithm
implementation. Indeed, the exact same algo-
rithm could time out on a problem, and then
solve the same problem in seconds on the next
run. This was both a serious problem and a
great opportunity. We hypothesized that we
could leverage this variance by using a restart
mechanism to both decrease variance and im-
prove average run-time.

Our random restart method is described in
Section 3.6. To isolate and evaluate its impact
on over-all average performance, we ran one
of the weaker versions of our algorithm (with
no variable or value heuristic usage) on the
full problem set with 10 seeds, with and with-
out random restarts. Here are the (average) re-
sults for a 60 second timeout:

Label
Counter

Unlabel
Counter

CPU Time
(seconds)

Std Dev of
CPU Time
Normalize
by Avg

varNONE‐
propC‐
valNONE‐
NORESTART

462,050 282,410 1.63 4.21

varNONE‐
propC‐
valNONE‐
RESTART

75,125 44,848 0.319 2.89

These figures clearly show that our restart
mechanism has a huge impact on run-time
performance, improving speed by almost a
factor of 10. This is obviously due to a corre-
sponding proportional decrease in the number
of label and unlabel operations.

Furthermore, these averages do not show
the effect of restarts on the number of prob-
lems solved. Indeed, on this particular run the
varNONE-propC-valNONE-NORESTART
algorithm timed out on 5 of the 60 problems,
while varNONE-propC-valNONE-RESTART
finished them all. These results are unsurpris-
ing given how widely our JSS’s performance

varies depending on the initial randomization.
Our restart mechanism therefore strongly
mitigates the “luck” factor in solving the prob-
lems.

5.5 Variance
The random restart mechanism clearly has a
strong smoothing effect on the variance of our
algorithms’ run-time performance. To go be-
yond this basic initial analysis, and given that
we now always use the restart mechanism, we
computed the standard deviation of CPU time
for all our algorithms. To account for the fact
that the different algorithms have very differ-
ent expected run-times, we normalized the
standard deviation relative to the expected
value.

The full results are given in the Annex, but
the analysis is complex. Indeed, it is hard, and
probably illusory, to discern “winners” and
“losers” in the variance figures, and no heuris-
tics stand out as having a particular consistent
effect. To evaluate the over-all trend of vari-
ance relative to average performance, consider
the scatter plot on the top of the next page,
which plots average CPU time in seconds on
the x-axis and normalized standard deviation
on the y-axis.

Our more pattern-minded readers will note
that the Normalized Standard Deviation pretty
much follows a hyperbolic curve relative to
the average run-time, irrespective of the nature
of the algorithm and heuristics. This would
seem to indicate that our random restart
mechanism has smoothed out all important
variance distinctions between our algorithms.
The two notable outliers and exceptions to this
are visible at the origin of the plot: our two
best-performing algorithms (varB2SLACKL-
propC-valB2SG and varB2SLACKL-propC-
valSG), are so good at all the problems (basi-
cally never unlabeling) that they also have
very low variance.

[12]

6 Future work

6.1 Smarter backtracking
In our current search implementation we use
the most primitive form of chronological
backtracking. Just as regular CSP solvers can
be greatly improved by upgrading chronologi-
cal backtracking to say Conflict-Directed
Backjumping, our job shop solver could po-
tentially also greatly benefit from more so-
phisticated dependency-directed backtracking.

Advanced backtracking techniques are
discussed in Xiong, Sycara & Sadeh [2]. They
propose three backtracking related methods:

• Dynamic Consistency Enforcement
(DCE): a selective dependency-
directed scheme that dynamically
focuses its effort on critical resource
sub-problems.

• Learning From Failure (LFF): an
adaptive scheme that suggests new
variable orderings based on earlier
conflicts.

• Heuristic Backjumping (HB): a
scheme that gives up searching areas
of the search space that require too
much work.

The authors judge that a complete depend-
ency-directed backtracking scheme would be
too expensive computationally, and thus use
DCE, which only checks consistency on sub-
groups of operations which they call “Danger-
ous Groups”. The determination of these Dan-
gerous Groups is done dynamically, and is an
integral part of the algorithm.

Given the size of our problems (and the
increase in computational power since 1992!),
it seems likely that a full dependency-directed
backtracking scheme is feasible in our case.
By analogy with the regular CSP CBJ case,
we need to maintain a conf-set for each vari-
able, which is the set of past levels with which
the variable xij conflicts with.

For our unlabel function, we can act just as
in regular CBJ: we simply backjump to the the
most recently assigned variable h in the cur-
rent variable i’s conf-set, empty the conf-sets
of the variables in between (and restore their
domains), and add the variables in i’s conf-set
to that of h.

For the label function the changes are not
so obvious, as it is not trivial to determine
which previously assigned variable is respon-
sible for an inconsistency with the current
variable. It seems that it would be more effi-

[13]

cient to do an FC-CBJ type approach to filling
in the conf-sets: whenever we perform con-
straint propagation, we work out which vari-
ables are having their domains reduced (from
2 to 1, otherwise we would get an inconsis-
tency anyway), and add the variable currently
being assigned to these variables’ conf-sets.

There are two possible ways to work out
the variables whose domain is affected by the
current assignment:

• During the constraint propagation, by
considering, at each operation visited
by the propagation, the set of variables
linked to this operation, and evaluating
whether each of these variables is
going to go from case 4 to case 1/2 (in
which case we add the freshly assigned
variable to that variable’s conf-set).

• After the end of the constraint
propagation, by simply considering
every unassigned variable and seeing
whether it has switched from case 4 to
case 1/2.

Both methods would imply a lot of extra
work/time, but they would allow us to identify
the root cause of a conflict further down the
line. Due to the speed at which our best
solvers can solve our given scheduling prob-
lems, we believe that any smart backtracking
method would spend too much time maintain-
ing data structures and would not make up for
the lost time in significant backjumps. Never-
theless, the methods would probably be help-
ful in more difficult scheduling problems.

6.2 Bslack
Another area which we wish to look into is
experimenting with the B2Slack heuristic
function. Indeed, the success we had with
B2Slack heuristic variable ordering with just
the base constants provided in Smith &
Cheng’s paper indicates that even better per-
formance could potentially be obtained by
tuning the function’s parameters. A basic hill-
climbing approach (or at the very least grid

search) could easily determine “optimal” val-
ues for the constants a and b.

6.3 Case 1/2 & 4 Sets
As noted in section 3.7, we do not maintain
separate arrays for the unlabeled variables of
each possible case. Maintaining separate ar-
rays instead of a single array could potentially
increase performance by decreasing the
amount of time required to determine if a case
1/2 variable exists.

7 References
[1] S. Smith and C. Cheng, "Slack-Based Heuristics for

Constraint Satisfaction Scheduling," Proceedings
11th National Conference on Artificial Intelli-
gence, July, 1993.

[2] Y. Xiong, K. Sycara, and N. Sadeh-Koniecpol, "In-
telligent Backtracking Techniques for Job Shop
Scheduling," Proceedings of the Third International
Conference on Principles of Knowledge Represen-
tation and Reasoning, October, 1992, pp. 14-23.

