
[1]

CS 227 Programming Assignment 2:

Constraint Satisfaction Problems

Todd Sullivan
todd.sullivan@cs.stanford.edu

Harry Robertson
harry.robertson@gmail.com

Pavani Vantimitta
pavani@stanford.edu

1 Introduction
Crossword puzzles, in addition to being a
hobby of potentially millions of people around
the world, are an excellent test bed for evalua-
tion of constraint satisfaction algorithms. A
solution to a crossword puzzle is an assign-
ment of words to a grid such that each word
meets a number of constraints: a semantic
constraint provided by the clue (which we do
not take into account here), a length constraint
provided by the grid, and constraints on its let-
ters provided by the words which it overlaps
in the grid. Below are the four crossword puz-
zles that we used as test problems in this as-
signment for our algorithms.

Puzzle 1

Puzzle 2

Puzzle 3

Puzzle 4

There are two approaches one can take to
model these crossword problems as CSPs: a
word based approach and a character based
approach. In the character based approach, we
consider the set of white squares to be our set
of variables. Thus the domain of each square
is the set of permissible characters (94 ASCI
characters in this case). The requirement that
each vertical or horizontal alignment of
squares must constitute a dictionary word
forms the constraint set (thus we have non-
binary constraints).

[2]

In the word-based approach, we consider
each word (i.e. a horizontal or vertical align-
ment of white squares) in the crossword puz-
zle to be a variable. Thus the domain for each
variable is the set of dictionary words of the
corresponding size. The constraints are the
overlap conditions imposed by the grid:
whenever two words overlap, they must share
the same letter in the overlap position (thus
the constraints are all binary, although one can
also consider the requirement that each word
value be in the dictionary to form a unary con-
straint).

There is clearly a trade-off between the
two approaches: with the character-based ap-
proach, the variables have very limited do-
mains (94 possible values, as opposed to tens
of thousands of potential words in the word-
based approach), while the word-based ap-
proach has relatively simple binary con-
straints.

However, the primary reason against
choosing the word-based approach, the large
domain size, can be mitigated by developing
fast and efficient word-lookup methods, which
are provided by the bit-set dictionary system
explained in Section 3. We were further
swayed towards the word-based approach by
Ginsberg’s paper on the subject [1].

In this paper, we begin by describing the
algorithms we used to solve the CSPs, then the
optimizations we use to take advantage of the
structure of crossword puzzles. We then de-
scribe our results, the conclusions we drew
and the reasons. Finally we conclude and give
ideas for future work.

2 Algorithms
All the algorithms we implemented have three
main common functions – label, unlabel,
chooseNextVariable.

2.1 Backtracking
These algorithms check backwards, from the
current variable against the past variable. It is
a depth-first search technique that chooses

values for one variable at a time, and back-
tracks when a variable has no legal values in
its domain left to assign.

2.1.1 Chronological Backtracking
This technique withdraws the most recently
made choice, the consequences of the recent
choice, selects a different alternative at that
point and moves ahead again. If the point
backtracked to has been explored previously,
it withdraws further until an unexplored alter-
native comes up. In label we loop through the
current domain of the variable i being as-
signed a value and check if it is consistent
with the other variables with which i has con-
straints. In the case that the value is not con-
sistent it just picks the next value in the do-
main of i and runs checks again. In unlabel we
backtrack to the previous level and remove the
assigned value for i from its domain and also
unassign i. chooseNextVariable chooses the
next variable by a static ordering, chronologi-
cally.

The problem that is apparent with this
technique is that many of the points it back-
tracks to have nothing to do with the dead-end
it had encountered and thus is inefficient.

2.2 Back jumping
One way of doing informed backtracking is
called back-jumping. This approach goes back
directly to the point (or variable) which caused
the dead-end or failure to the most recent as-
signment.

2.2.1 Conflict directed back jumping
This is a simple variant of back jumping
which uses a set of variables, called conflict
set, which consists of all the variables that
have constraints with the variable being as-
signed a value. This approach backtracks to
the most recent variable in this set. This is im-
plemented by accumulating this set while
checking for domain values that satisfy a con-
straint for a variable and when a domain wipe
out happens, the conflict set is used. In label

[3]

we try to assign a value to variable i from its
domain that is consistent with all the other
variables it has constraints with. In case there
is a conflict with any variable, we add it to the
conflict set and we remove that value from i’s
domain and move through the other values in
the domain. In unlabel we pick the deepest
level from the conflict set and unassign the
variables whose values have been set from
that deepest level to the current level and also
reset their domains. chooseNextVariable goes
chronologically.

2.3 Forward Checking
Forward checking makes additional use of
constraints by looking at each unassigned
variable connected to a variable by a con-
straint when assigning it a value, in order to
predict future domain wipe-outs. In forward
checking, for each variable i we keep three
stacks, reductions_i, pastfc_i, and future-fc_i.
The reductions stack for a variable i, reduc-
tions_i, keeps elements that are lists of values
in the domain of i disallowed by previously
instantiated variables. That is, a variable in-
stantiated earlier in the search than i removed
some set of values from i’s domain, and these
are kept on the reductions_i stack. Past-fc_i is
a stack of the levels in the search that have
checked against variable i, while future-fc_i is
the stack of future variables against which i
has checked.

In forward checking’s labeling step, we it-
erate over all the variables that have not yet
been assigned, checking the currently instanti-
ated variable against them. After attempting to
instantiate a variable i, for every variable j that
remains unassigned we remove the possible
values for j that do not meet the constraints
between i and j. For every j, we add to reduc-
tions_j all values from j’s domain that has
been eliminated by constraints with xi, and we
push variable j onto future-fc_i, since j comes
after xi in the search. We also push the current
level onto pastfc_j. In the unlabelling step, we
move to the previous level update the domains

back to undo the changes, undo the reductions,
and unassign the variables previously assigned

If any of the unassigned variable’s do-
mains has a value that is inconsistent with the
assignment it deletes the value from that vari-
ables domain. We can thus see that this proce-
dure makes it easy for collecting the conflict
set elements. Whenever forward checking
based on an assignment for variable i deletes a
value from another variable j, it should just
add i to j’s conflict set. During this process if
variable j’s domain empties out, then j goes
into the conflict set of i. It can also be said that
forward checking is better than back jumping
because it draws the final conclusion faster
than back jumping, saving some redundant it-
erations.

2.4 Dynamic Variable Ordering
The order in which variables are assigned val-
ues can be of two types: static and dynamic.
Static ordering is when we always know that
variable i will be assigned a value before vari-
able j. In Dynamic Variable Ordering (DVO)
the search process determines which variable
is to be assigned based on the state of the
search process. Static variable ordering is
what we use when we do not use dynamic or-
dering. This ordering is said to have a very
high role in the efficiency of constraint satis-
faction problem solutions. The heuristic we
use for DVO is called minimum remaining
values (MRV).

2.4.1 Minimum Remaining Values
The first variable is assigned without DVO
and then onwards the MRV function is called.
This technique checks each value in the do-
main of each unassigned variable to see if that
value is consistent with the set of assignments
made so far. It then keeps a count of the re-
maining values in each variable’s domain that
is compatible with the current set of assign-
ments and returns the variable with the mini-
mum of this count.

[4]

2.5 Arc Consistency-3
One common technique used to increase the
efficiency of these algorithms is to prune the
search space prior to processing these tech-
niques. This is done by a technique called
Constraint propagation, propagating the impli-
cations of a constraint on one variable onto
other variables. This is to reduce the amount
of search time afterwards. The term Arc refers
to the directed constraint from one variable to
another variable and thus shrinks the search
space by removing the un-supporting values
from variable’s domains, which corresponds
to an early detecting of inconsistencies. A
variable x’s value is unsupported if there is a
constraint on the variable such that there are
no instantiations of other variables that satisfy
the constraint when x is set to v.

AC-3 is one such arc consistency algo-
rithms and works in two steps. It first iterates
over every variable x, checking whether its
values are supported in each constraint over x
and simultaneously it queues the unsupported
values it has removed. It then dequeues the
previously removed unsupported values,
checking whether the removals have caused
more values to become unsupported. Any
newly unsupported values it places on the
queue and continues dequeueing until it gets
to the point where the queue is empty. This
happens when no more values become unsup-
ported, and we are guaranteed termination be-
cause there only finitely many values that can
be removed.

3 Optimizations
Caching and other optimizations are essential
for creating usable CSP solvers. Like our pre-
vious project's SAT solvers, we developed our
CSP algorithms with efficiency in mind. Our
optimizations include managing our own
memory for most data structures (no STL
Vectors), not allowing duplicate arcs in our
AC3 queue, indexing character occurrence in
domains using bitsets, and several other mem-
ory allocation tweaks.

3.1 Memory Management
Keeping with the spirit of our efficient SAT
solvers, we again do not use the C++ Standard
Template Library (STL) Vector class to store
our data. Instead, we use our own data struc-
ture called superArray, which is a templated
class that simply contains an integer called
length and a pointer to an array of whichever
data type the superArray stores. The class con-
tains two functions, allocate for allocating a
set size and wipe for deleting the dynamically
allocated memory. Items in the array are ac-
cessed directly using the pointer.

We do not use the Vector class because of
the overhead associated with its resizable ar-
ray properties and its out-of-bounds checking.
While these features are important in many
settings, they are only barriers in our quest for
speed and efficiency. In our previous report
about our SAT solvers, we presented a simple
experiment that shows how our data structure
is much faster than using the Vector class
when performing reads and writes. One lack-
ing element of our experiment was that it in-
volved repeatedly reading and writing to the
arrays and did not include any attempt to
measure the speedup in our application do-
main. We expand upon our previous experi-
ment here and present the effects of using our
own data structure on crossword CSP solving.

The Vector class contains two methods for
accessing elements in the internal array. The
first method, which we will refer to as Op, is
through the overloaded [] operator. Op does
not perform out-of-bounds checking. The sec-
ond method, which we will refer to as At, is
through the at() function. As one would guess,
At is different from Op in that it performs out-
of-bounds checking.

First, we ran a modified version of our
original experiment, which is located in Test-
Vector.h within our source code, on the ma-
chines described in Section 4 of this report
(Dell Precision 390 with a 2.4 GHz Core 2
Duo and 2 GB of RAM running Ubuntu). The
experiment performed 4 billion reads and 4

[5]

billion writes using each method (Op, At, and
our superArray), with all memory allocated
before beginning the test. We executed the test
ten times and measured CPU processing time
instead of real time. Table 3.1.a shows, as ex-
pected, that our superArray direct access
method was about 1.5 times faster than Op on
reads/writes and 5.5 times faster than At.

Table 3.1.a: TestVector.h Computation

Time Relative to superArray

 Reads Writes
superArray 1.0 1.0
Vector Op 1.4 1.7
Vector At 5.5 5.5

In an effort to prove that using our su-

perArray has a measureable impact on the per-
formance of our CSP algorithms, we included
a preprocessor define statement VEC-
TOR_TEST in data_structures.h. When VEC-
TOR_TEST is set to false, all of our algo-
rithms use our superArray direct access
method. When VECTOR_TEST is set to true,
our algorithms use a Vector class in place of
the pointer within superArray and access ele-
ments using the Op method. Thus we have a
compile-time switch that allows us to specify
which data structure our algorithms use.

Regardless of which data structure is used,
we still perform all of the memory allocation
tweaks and other optimizations described later
in this section. We ran our CSP solver with all
features turned on (AC3, forward checking,
dynamic variable ordering with the minimum
remaining values heuristic, and conflict-
directed backjumping). We measured CPU
time and executed the experiment on the same
machines as before, averaging over ten execu-
tions. We timed the two versions of our solver
on the puzzles contained in the file "puz-
zlesWithHardStuff", which is included in our
source. This puzzle file contains the four puz-
zles described in Section 1, as well as a 26-by-
26 cell puzzle that was created by taking four
copies of Puzzle 3 and arranging them to form

a square and a 37-by-37 cell puzzle that was
created by taking nine copies of Puzzle 3, ar-
ranging them in a similar manner, and remov-
ing the right two columns and bottom two
rows.

Table 3.1.b presents the results of this real-
world experiment. Our superArray method
was 1.02 times faster than the Vector Op
method. While this is certainly not a drastic
improvement, it is a measurable improvement
nonetheless. Additionally, while Vector pro-
vides automatic resizing functionality that su-
perArray does not include, both methods do
not perform out-of-bounds checking. Since we
do not require array resizing, and in fact we
pre-allocate all memory at the beginning as
described in Seciton 3.4, there is no reason to
use the Vector Op method when our superAr-
ray gives a slight performance boost.

Table 3.1.b:

Crossword CSP Computation
Time Relative to superArray

superArray 1.0
Vector Op 1.02
Vector At 1.18*
*Estimated using relative read /
write times from Table 3.1.a.

Since we do not require array resizing, the

only advantage of using Vector is the out-of-
bounds checking in At. Using the relative
read/write computation times from Table 3.1.a
and the result of our real-world experiment,
we estimate that our superArray method is
1.18 times faster than using the Vector At
method. While out-of-bounds checking can
help decrease the amount of hard to find bugs,
we do not believe the potential development
time benefit makes up for the performance de-
crease. (We just love memory corruption
bugs.) We unfortunately cannot use the VEC-
TOR_TEST switch to obtain exact results of
using Vector At because the switch took ad-
vantage of the fact that the superArray and
Vector Op methods both use brackets [] to
access the array members.

[6]

3.2 Faster AC3
Traditional AC3 uses a queue to maintain the
arcs that need to be processed. When running
the algorithm on a small testing puzzle as it is
traditionally defined, we found instances
where the algorithm would process the same
arc back-to-back or have the same arc in the
queue multiple times (but separated by other
arcs). Both of these cases resulted in redun-
dant processing that reduced the speed of the
algorithm.

To solve this problem, we created a sec-
ond version of AC3 that uses a set, which does
not allow duplicate arcs, instead of a queue.
This modification was relatively easy and only
required changing four lines of code. Our
hope was that the performance gains from not
processing arcs multiple times would be
greater than the computation time required to
maintain that set's unique item property (no
duplicate arcs). Our experiments running both
versions of AC3 on multiple puzzles shows
that this was indeed the case.

We ran both versions of AC3 on three dif-
ferent puzzle collections. Collection 1, con-
tained in the file "puzzlesAC3," consisted of
80 copies of Puzzle 4. Collection 2, contained
in the file "puzzlesAC3_blank," consisted of
80 copies a blank 13-by-13 puzzle (no black
squares). Collection 3, contained in the file
"puzzlesAC3_hard," consisted of 40 copies of
the 37-by-37 puzzle that is described in the
previous section. We conducted the experi-
ments on the same machines as our other tests.
Aside from measuring CPU time, we also in-
cluded checks at the end to make sure that the
result of both versions were identical.

Table 3.2 shows the results of these ex-
periments. In all cases, the output of AC3 was
identical with both versions. Using a set is 1.5
to 2.2 times faster than using a queue. We ini-
tially believed that we would find greater
speedup as we increased the number of con-
straints within the puzzle because the set ver-
sion would eliminate the processing more du-
plicate arcs, which was our motivation for

creating Collections 2 and 3 after running the
experiment on Collection 1.

Our results show that this is not necessar-
ily the case. While moving from Collection 1
to Collection 2 follows our hypothesized trend
of greater speedup, moving from Collection 2
with 338 constraints to Collection 3 with
1,972 constraints actually reduces the
speedup. Despite this result, we still believe
that the relative trend of greater speedup as the
constraint count increases.

Table 3.2: AC3 with a Set vs.

AC3 with a Queue

Collection Constraints
Per Puzzle

Set CPU
Time
Per

Puzzle

Set
Speedup

1 264 0.06
seconds 1.54

2 338 0.16
seconds 2.23

3 1972 0.53
seconds 1.65

3.2.1 A Revised Hypothesis
We believe that the difference in speedup be-
tween Collections 2 and 3 is because of the
different distribution of constraints that each
puzzle contains. Collection 2 contains no
black squares, so every word has a constraint
on every letter. Collection 3 has many black
squares that are arranged in a similar manner
to Collection 1. Collections 1 and 3, which
have similar distributions for the constraints
on each variable, show the trend of the AC3
set version's speedup increasing as the amount
of constraints increases.

We created additional puzzle collections to
test our revised hypothesis that, when compar-
ing processing time on puzzles that share the
same distribution of constraints on variables,
an increase in the number of constraints will
result in a greater speedup from using AC3
with sets over AC3 with queues. We ran the
previous experiment on 6 different puzzle sets,

[7]

which we will ball Blank 13 through Blank
18. Each puzzle set contained no black
squares and thus every word has a constraint
on every letter. Each set contains 80 puzzles.
The number in each set's name indicates the
size of the puzzles. Therefore Blank 13 con-
tains 80 13-by-13 blank puzzles. Note that
Blank 13 is the same as Collection 3 in the
previous experiment. Blank 14 through Blank
18 are contained in "puzzlesAC3_blank14"
through "puzzlesAC3_blank18" respectively.

Table 3.2.1 shows the results of running
our new experiment on the same machines as
before. Our hypothesized trend appears to
hold true for Blank 15 through 18, but the set
speedup for Blank 14 is more than twice the
speedup of any other puzzle set. While the re-
sults do not prove our hypothesis, we still
have an inkling that our revised hypothesis is
true.

The primary problem with this latest ex-
periment is that we are not accounting for the
fact that the domains of the variables com-
pletely change from one puzzle size to the
next. In Blank 13, all variables are words of
length 13 while in Blank 17 all variables are
words of length 17. Thus the variable domains
in the Blank 13 puzzle are not of the same size
as the domains in the Blank 17 puzzle. Addi-
tionally, the actual distribution of possible
characters at each location in each word is dif-
ferent across the puzzle sets. To solve these
problems one would need to create a normal-
ized dictionary that, for example, contains the
same probability of an 'A' occurring as the
first letter of a word regardless of word length.
Unfortunately, we did not have enough time to
pursue this extension.

3.2.2 Faster AC3: Does It Matter?
While using a set instead of a queue can make
AC3 up to 4.8 times faster, the fact remains
that in our crossword puzzle setting AC3 takes
less than one second to complete. Indeed, the
pre-processing arc-consistency step is gener-
ally very fast relative to over-all algorithm
run-time. Thus, by Amdahl’s law, any speed

improvements to AC3 are limited to this small
fraction of over-all system performance.

However, as we discuss in our experimen-
tal results below, our fastest solvers frequently
solve crossword puzzles in less than one sec-
ond. Therefore in this setting, our reduction in
AC3 computation time is significant in that it
allows AC3 to actually be useful in some
cases.

Table 3.2.1: AC3 with a Set vs.

AC3 with a Queue

Blank Constraints
Per Puzzle

Set CPU
Time Per

Puzzle (sec)

Set
Speedup

13 338 0.16 2.23
14 392 0.06 4.83
15 450 0.03 1.76
16 512 0.03 1.88
17 578 0.04 1.89
18 648 0.04 1.89

3.3 Managing Domains
Our most important optimization is our man-
aging of each variable's domain. In all of our
experiments, we use a dictionary of roughly
20,000 words. Each word in our dictionary
can contain ASCII characters ranging from 33
(!) to 126 (~), with all lowercase letters
mapped to their corresponding uppercase let-
ters. This results in 94 possible characters. De-
spite uppercasing all letters, we left our man-
agement system treating lowercase letters as a
possibility so that we could turn off the upper-
casing policy if we desired. Including lower-
case letters as a possibility without actually
using them only slightly increases memory
usage and does not increase processing time
except for when reading in the dictionary. Due
to the amount of words that could possibly be
in a variable's domain, if we were to maintain
each variable's domain as an array of strings,
we would end up spending much of our time
managing these arrays rather than solving the
problem.

[8]

3.3.1 A Motivating Example
Suppose we have a variable V that is a 5-letter
word with constraints on its first and fourth
letters. Our dictionary contains 3,169 5-letter
words, so V's initial domain size is a little over
3,000. Now suppose need to apply V's two
constraints, with 'A' as the first letter and 'E' as
the fourth. Without considering how we will
store this restricted domain, to apply the con-
straints we must loop through all 3,169 words
and perform a check against their first and
fourth letters.

Now suppose V's domain was reduced to
zero, so we back track and then return to
choosing a value for V given the new con-
straints that the first letter is 'A' and the fourth
letter is 'L'. Again, to calculate the restricted
domain we must loop through all 3,169 words
and perform a check against their first and
fourth letters.

As one might notice, this management
scheme is incredibly slow because we are per-
forming checks against every 5-letter word
during every restriction. The commonality be-
tween the previous two restrictions is that in
both cases we required the first letter to be 'A'.
If we stored the restricted domain for the first
letter being 'A', then to apply the second con-
straint on the fourth letter we could simply
loop through the stored restricted domain and
perform one letter check instead of looping
over all 3,169 words and performing two letter
checks.

3.3.2 Our Solution
This storing of restricted domains, which is
proposed in the Ginsberg 1990 paper men-
tioned in the project handout, is the idea be-
hind our domain management scheme. When
reading in the dictionary, for each word length
L we create a 94-by-L array of bitsets with in-
dexing starting at zero. Each bitset contains
one bit for each word of length L. If a word's
bit is equal to one then the word exists in the
domain that the bitset represents.

The index of the 94 rows indicate which
character the row of bitsets belongs to, with '!'

being at index 0 and '~' being at index 93. The
index into the L columns indicates the position
in the L-letter word. The bitset at row A and
column B represents the domain for an L-
letter word that contains the sole restriction of
having the character indicated by A at location
B in the word. In our original implementation
all variables of the same word length share the
same array of bitsets, but, as we will discuss in
Section 4, to satisfy the project's requirements
of randomization our current implementation
maintains an separate array of bitsets for each
variable.

Thus for our variable V, we have a 94-by-
5 array of bitsets with each bitset containing
3,169 bits. In our example where V requires
the first letter to be 'A' and the fourth to be 'E',
we simply have to perform a bitwise AND op-
eration on the bitset at row 32 and column 0
and the bitset at row 36 and column 4. The
first bitset contains ones for all 5-letter words
that contain 'A' as the first letter. The second
bitset contains ones for all 5-letter words that
contain 'E' as the fourth letter. Thus the bit-
wise AND operation will result in an intersec-
tion of the two sets and will contain ones for
all 5-letter words that contain 'A' as the first
letter and 'E' as the second letter.

3.3.3 Empirical Comparison
These operations on sets of bits are signifi-
cantly faster than looping through all of the
words of the correct length and performing
checks on specific characters. To show this,
we conducted a simple test of repeatedly com-
puting the restrictions in our previous example
with variable V. We were not able to compare
the relative performance of both methods on
the actual crossword puzzle solving problem
because, as we will discuss in Section 3.3.4,
the bitset method requires changing the struc-
ture of the CSP algorithms to specifically take
advantage of the bitwise operations.

In this simple experiment, which is the
Dictionary::timeTest function in our code, we
repeatedly restricted the domain of a 5-letter
word V by the constraints that the first letter is

[9]

'A' and the fourth letter is 'E'. Instead of actu-
ally creating the list of words that satisfy the
restrictions, we only computed the amount of
words that satisfy the restriction. Thus for the
non-bitset method we loop through all 3,169
words, perform two equality checks (one for
'A' on the first letter, the other for 'E' on the
fourth letter), and increment a counter if both
checks return true. For the bitset method we
perform a bitwise AND operation on the two
bitsets as described in the previous section.

We performed the restriction 5 million
times and calculated per restriction processing
times by dividing the total time by 5 million.
We measured CPU time and used the same
machines as the previous experiments. We ex-
cluded the time required to generate the arrays
of bitsets for each word length from the bitset
method's recorded time, but this computation
time is included in the analysis.

Table 3.3.3 shows the results of our ex-
periment. The bitset method is an order of
magnitude faster than the non-bitset method,
but it incurs a preprocessing penalty of 0.03
seconds to create all of the bitsets when read-
ing in the dictionary. Since the bitset method
is an order of magnitude faster, one only needs
to perform 671 restrictions in order to break
even due to the 0.03 second preprocessing
cost. As our results in Section 5 will show, we
perform far more than 671 restrictions (in fact,
our algorithms perform millions or billions of
restrictions). Thus the bitset method is essen-
tial to fast crossword puzzle CSP solving. The
bitset method also incurs an additional cost of
space, but when variables whose words are of
equal length share the same bitset arrays the
space cost is only 2.7 MB.

Another important positive point of our
simple experiment is that in the bitset method,
in order to calculate the amount of words that
satisfy the restriction, we actually compute the
list containing the restricted domain and then
count the amount of bits set to one. Thus in
our experiment the bitset method is both com-
puting the restricted domain and the size of

the restricted domain, while the non-bitset
method is only computing the size and would
have to populate some other data structure to
generate the restricted domain.

Table 3.3.3: Comparison of

Domain Management Methods

Bitset CPU Time
Per Restriction 5.3 x 10-6 sec.

Non-bitset CPU Time
Per Restriction 5.0 x 10-5 sec.

CPU Time to
Generate All Bitsets 0.03 sec.

Restrictions Required to
Break Even 671 restrictions

Memory Required to
Hold Bitsets 2.7 MB

3.3.4 CSP Algorithm Adaptation
Due to our domain-specific approach for man-
aging domains, we had to restructure the stan-
dard vanilla CSP algorithms presented in Sec-
tion 2. In this section we describe how we
modified several of the standard algorithms to
use our domain management scheme.

3.3.4.1 Chronological Backtracking
The standard routine for labeling a variable V
is to loop through each value in V's current
domain and check if the value violates a con-
straint with any of the previously assigned
variables. If the value does not violate any
constraint then that value is chosen as V's as-
signed value and the search moves on trying
to assign values to other variables.

Unfortunately, we cannot follow this pro-
cedure when using our bitsets because we use
the AND operation to compute the entire re-
striction on a domain in one swoop. Thus our
standard label function, which is
CSPSolver::label() in our source, is slightly
different. First, we apply all restrictions that
exist due to any of the previously assigned
variables having a constraint with V. We then
pick the word that corresponds to the first one
bit in the resulting bitset. If we for some rea-

[10]

son or another return to labeling V because the
first value did not work, then we find the next
one bit in the bitset, pick its corresponding
word, and do not apply the restrictions again.
If all of V's values failed to work, then we re-
store V's domain in the unlabel function and
the next time we try to label V we compute
the new restricted domain and start over.

3.3.4.2 Conflict-Directed Backjumping
The standard label routine of conflict-directed
backjumping contains a slight modification to
the chronological backtracking routine.
Whenever one of V's values violates a con-
straint with some previously assigned vari-
able, we add the previously assigned variable
to V's conflict set. We handle this slight modi-
fication, which is CSPSolver_CBJ::label() in
our source, by calculating the restricted do-
main with one constraint restriction at a time.
After applying the restriction induced by a
constraint, we check whether the size of the
domain has changed. If the size decreased
then that means that there were values in V's
domain that violated the constraint, so we add
the previously assigned variable that corre-
sponds to the constraint to V's conflict set.

3.3.4.3 Forward Checking
Forward checking involves computing and
storing reductions, which are lists of values
that were removed from a domain. The bitset
method for computing reductions is quite ele-
gant. We simply store the current domain's
bitset, restrict the current domain by the given
restriction imposed by a constraint, and then
perform a bitwise XOR operation on the old
and new current domains to generate the list
of values that were removed. We can then re-
store the reduction by performing a bitwise
OR operation between the current domain and
the reduction.

3.3.4.4 AC3
AC3 includes a function that takes in two
variables V and W and removes inconsistent
values from the domain of V based on the
constraint between V and W. The routine
loops through all values in V's domain and
checks if W's domain contains a value that al-
lows the pair of values to satisfy the constraint
between V and W. The function removes the
value from V's domain if no such pair exists.

In our routine, we start by storing the loca-
tion of the constraint for each variable with
loc_V holding the restricted location in V's
word and loc_W holding the restricted loca-
tion in W's word. Then for each character C of
the 94 valid ASCII characters, we restrict W's
domain with the restriction that the letter at
loc_W is C. If the resulting domain is empty
then we need to remove all words from V's
domain that contain C at loc_V. To do this we
store V's domain in a temporary bitset Dtemp,
restrict V's domain by C at loc_V, perform a
NOT operation on the restricted bitset, and
then perform an AND operation on Dtemp and
the result of the NOT operation, storing the re-
sult as V's base domain. The only other key
detail is that one must remember to restore the
domains to their base domains before proceed-
ing to the next character C.

3.4 Memory Allocation and Quick
Insertions

As we noticed when creating our SAT solvers,
memory allocation can be costly. To reduce
the amount of memory allocation required
during the search, we allocate all data struc-
tures before starting the label/unlabel loop.
While this step is obviously required for the
domain caching structure, it is less obvious for
structures such as the list of variables with the
best score in our dynamic variable ordering
method. We allocate a superArray for this list
at the beginning of the label/unlabel loop,
making its size the same as the number of
variables in the CSP. Instead of using the su-
perArray's length attribute to indicate the

[11]

amount of space allocated in the array, we use
it to indicate the amount of variables that are
actually in the list. Thus whenever we choose
the next variable to label we do not need to al-
locate memory for the list and instead set the
length to zero and start filling the list. We also
pre-allocate our confSets and other structures
to their potential maximum size before enter-
ing the label/unlabel loop so that we never
have to reallocate memory due to resizing re-
quirements. Additionally, we make every at-
tempt to use pointers and not invoke a copy
constructor anywhere in each solver's code.

3.5 Restart Timeouts
We found that many of our algorithms were
susceptible to bad luck on their initial seed
values for the random number generator. As
discussed in Section 4.3, we randomize our
choices for equally good variables. We also
randomize the order that values in each vari-
able's domain are considered by shuffling the
words in each variable's domain when reading
the dictionary and puzzles from their respec-
tive files, as described in Section 4.3. We
found that the ordering of the domains had
significant implications on runtime. For ex-
ample, with all of our features turned on
(AC3, conflict directed back jumping, forward
checking, and dynamic variable ordering with
the minimum remaining values heuristic), our
solver could often solve Puzzle 4 in around
0.28 seconds, but with unlucky seed values the
solver would require at least several minutes
to find a solution.

An obvious insight from these observa-
tions is that periodically restarting with a re-
shuffled ordering for each domain could dras-
tically improve overall performance. To fix
this problem, we implemented an increasing
restart timer that allows the algorithm addi-
tional time between restarts as the number of
restarts increases. The initial execution length
and the multiplier that increases the length of
time allowed for the next run can be specified
on a per solver basis, but we did not have suf-

ficient time to run experiments with the vari-
ous algorithms to find optimal values for each
solver.

For our solvers using forward checking,
we set the execution length of the first run to
0.75 seconds and the multiplier to 1.1. Thus
the first run is allowed to execute for 0.75
seconds, the second run for 0.825, and the
third run for 0.91 seconds. For our other
solves, we set the execution length of the first
run to 60 seconds and the multiplier to 2. Ad-
ditional discussion on randomization and how
we ensure deterministic behavior (for repeat-
ability of experiments) given the same initial
seed value is included in Section 4.3.

4 Experimental Method
We conducted all of our experiments on the
Pod cluster. The Pod cluster contains Dell
Precision 390s, each with a 2.4 GHz Core 2
Duo and 2 GB of RAM running Ubuntu 7.04.
All results in Section 5 are from running each
solver on the four crossword puzzles using 15
different seeds for the random number genera-
tor. We decided on the fixed 15 specific seed
values to use by seeding the random number
generator with the clock's time and then print-
ing out 15 random numbers. The readme in-
cluded with the source describes how to spec-
ify your own seed or which of our 15 seeds to
use.

4.1 Naming Conventions
In all results we refer to forward checking as
FC, dynamic variable ordering with the mini-
mum remaining values heuristic as DVO, con-
flict directed backjumping as CBJ, and
chronological backtracking as chronBT. The
naming convention for solvers is AC3?-FC?-
DVO?-CBJ?. With the exception of
CBJ/chronBT, if the particular feature is
turned off then it has the word "no" in front of
it. Thus the solver that uses AC3, has FC off,
uses DVO, and uses CBJ has the name "AC3-
noFC-DVO-CBJ".

[12]

Through all of our experiments we gath-
ered results for all combinations of AC3
on/off, FC on/off, DVO on/off and CBJ
on/off. Several of these combinations pro-
duced solvers that could not solve the prob-
lems, so we imposed a timeout limit of 10
minutes. The solvers of primary important to
this study (the solver with all features turned
on and all of the solvers with only one feature
turned off) were all able to find solutions with
each seed in less than 10 minutes.

4.2 Our Performance Metrics
We track six metrics: Restrict Domain
Counter, Jump Counter, Label Counter, Unla-
bel Counter, CPU Time, Real Time and Re-
start Counter. Restrict Domain Counter is the
number of times that the solver restricts a do-
main by ANDing the current domain of a
variable with some bitset. The Jump Counter
is the number of levels that are jumped over
when backtracking (this value is zero when
CBJ is turned off). Label Counter is the
amount of times we attempt to label a variable
and Unlabel Counter is the amount of times
we unlabel a variable. Restart Counter is the
number of times the solver restarts the search
and reshuffles the ordering of each domain.

The CPU Time and Real Time are both in
seconds. Since our CPU timer less reliable for
runtimes close to zero, we record the Real
Time for both CPU Time and Real Time when
the reported CPU Time is less than one. CPU
Time and Real Time do not include the proc-
essing time for reading in the crossword puz-
zles/dictionary or creating the arrays of bitsets.
The timing starts when the function
CSPSolver::solveCSP is called.

4.3 Randomization
The random number generation is invariant to
the amount of puzzles in the puzzles file, the
order that the puzzles are solved, and the spe-
cific puzzles in the puzzles file. Thus if the
puzzles file has only the four standard puzzles
in it, given a specific seed the output of the

smallest puzzle when it is the first puzzle in
the file will be the same as the output when it
is the last puzzle in the file. We achieve this
by seeding the random number generator with
the specified seed before each crucial section
of code. Our seed points are: when we read in
the dictionary, when we start to read a new
puzzle from the puzzle file, and just before we
call CSPSolver::solveCSP.

To find a variety of solutions we randomly
pick variables when choosing the next vari-
able to label if multiple variables exist that are
equally good. When not using dynamic vari-
able ordering, this involves randomly picking
a variable in the variablesNotLabeled array.
When using dynamic variable ordering, this
involves randomly picking a variable from the
array of variables with the smallest domain
size.

We also randomly shuffle the domains of
each variable. When creating the domain for
each variable, we take the array of words for
the given word length, loop through each in-
dex randomly swapping the word at the given
index with another word in the array, and then
create the array of bitsets. Thus all variables of
the same word length loop through their do-
mains in a different order.

On must take special care to ensure deter-
ministic behavior given a seed when using our
restart optimization in Section 3.5. In a tradi-
tional timeout scenario, one would set a time-
out of say 30 seconds and force an automatic
restart once the elapsed CPU time is greater
than 30 seconds. The problem with this
method is that the timeout due to the elapsed
CPU time check is not guaranteed to occur on
the same iteration of the search loop during
each execution. If the timeout does not occur
on the same iteration during each execution
then across different executions of the pro-
gram a different number of random numbers
will be generated for a given run. This will re-
sult in different outputs because the restarts
will be effectively starting the search at differ-

[13]

ent points of the pseudorandom number gen-
eration based on the initial seed.

We devised a simple method to ensure de-
terministic behavior given a seed when restart-
ing. We allow each value to define a window
value in which all timeouts that occur during
the same window are guaranteed to force a
timeout at the same time (the end of the win-
dow). We implemented this guarantee by add-
ing an additional constraint to the timeout
check that the Label Counter must be a multi-
ple of the window value in order for a timeout
to occur.

As an example, the window value for our
algorithms that use forward checking is 5,000.
As we discussed in Section 3.5, the first run
for our forward checking solvers is allowed to
last for 0.75 seconds. After 0.75 seconds has
elapsed, the solver will be forced to restart on
the next iteration where the Label Counter is a
multiple of 5,000. As long as our timer does
not vary in its readings more than the amount
of time the algorithm takes to perform 5,000
label operations, our program will be com-
pletely deterministic given an initial seed
value. We set the window value for all non-
forward checking algorithms to 30,000, and
unfortunately did not have sufficient time to
conduct experiments to find an optimal win-
dow value for each algorithm.

5 Progressive results analysis

5.1 Initial naïve implementation
When we began the task of developing a CSP
solver for crossword puzzles, we obviously
had no experimental data from which to judge
how much optimization would be required.
We initially developed a generic CSP solver,
for the following reasons:
 to avoid premature optimization
 to gauge the level of optimization and

specialization required to handle the task
 to have a program capable of handling a

much more general class of CSP prob-
lems than just crosswords.

Obviously, we were immediately confronted
with the fundamental decision of how to rep-
resent the crossword problem in the CSP for-
malism. In particular, there is the key choice
of what to consider as the variables: individual
character slots, or whole words. As we saw in
Section 1, there is clearly a trade-off between
the small domain size of the characters (a few
dozen possible values, as opposed to tens of
thousands of potential words) and the simple
binary constraints over word variables.

Ideally we would have liked to develop
both approaches in order to compare their per-
formance and decide conclusively which is
more effective. However, we estimated that
our time would be better spent by focusing on
one approach, and going into greater depth.
For the reasons explained in Section 1, we de-
cided to us a word-variable CSP representa-
tion of the problem.

Our initial results quickly showed, how-
ever, that this generic approach was over-
whelmed by even simple 5*5 crosswords. It
therefore became clear that a much more spe-
cialized approach would be required, taking
into account the nature of the variables and
constraints. In particular we hypothesized that
tremendous gains in performance could be
reaped by exploiting the very specific nature
of the constraints (i.e. the fact that every con-
straint is simply the equality between the
characters at two specified positions in two
words). To validate this hypothesis, and hope-
fully improve our crossword results, we rede-
veloped our base CSP solving platform using
the bit-set dictionary-tree look-up method de-
scribed in Section 3.

5.2 A problem-specific approach
We implemented this bit-set dictionary repre-
sentation based primarily on Ginsberg’s 1990
paper. As we have already seen in part 3, it
provides efficient data structures for restrict-
ing the current domain of a word-variable
given a constraint of fixing one of its charac-
ters. We hypothesized that naively running the

[14]

standard CSP solving algorithms (and in par-
ticular iterating over the potential values of a
variable to evaluate constraint) using these
data structures would be very inefficient. Our
results confirmed this: we were still unable to
solve simple 5*5 crosswords. During this time
we were primarily using a set of extremely
simple crosswords (around 4*4) to evaluate
our performance and debug.

We therefore modified the basic CSP algo-
rithm to exploit the strength of the bit-set dic-
tionary data structure, by simultaneously prun-
ing all impossible values of a variable based
on a constraint with a previously assigned al-
gorithm. This reduction of the usual iteration
over potential values to a single operation
dramatically improved performance, and al-
lowed us to finally tackle the simpler cross-
words. However, our algorithm was still un-
able to solve more complex crosswords in a
reasonable amount of time. We therefore went
on to implement several algorithmic exten-
sions. The implementation details of these ex-
tensions can be found in Section 3; here we
shall examine the key results and our progres-
sive analytical process.

5.3 Extensions
5.3.1 Forward checking
Based on the quantitative results in the CSP
literature, we hypothesized that the most ef-
fective extension would be Forward Checking.
However, this also proved to be relatively
tricky to implement. In particular, the standard
pseudo-code for FC had to be adapted to ap-
propriately use our bit-set dictionary system
(see Section 3). In order to debug our imple-
mentation, we used a set of specially chosen
crosswords designed to test specific compo-
nents of the algorithm (e.g. a crossword on
which no unlabeling is ever required, an ex-
tremely constrained crossword with no black
squares, etc.).

Once implemented, the results are ex-
tremely positive, as evidenced by the compari-

son of the run-times on Puzzle 1 in this table
(note that the CPU timer is inaccurate for run-
times below one second).

 Averages

 Label
Counter

Unlabel
Counter

CPU
Time
(sec-
onds)

noAC-
FC-

noDVO-
chronBT

34 15 0.03

noAC-
noFC-

noDVO-
chronBT

8,084,841 4,049,466 19.54

Forward checking reduces the time taken

to treat Puzzle 1 by several orders of magni-
tude (note that we cannot compare for the
other puzzles, as the base algorithm could not
solve them before time-out). To understand
why the effect is so strong, we evaluated cer-
tain meta-statistics: the number of calls to la-
bel and unlabel in particular. The origin of the
speed-up is clear: the Forward Checking algo-
rithm completely avoids labeling most “dead-
end” variables, which would otherwise lead us
down very large useless parts of the search
tree. This effect is also true for harder prob-
lems, but is a lot less pronounced when DVO
is activated.

5.3.2 Dynamic Variable Ordering
In parallel, we implemented Dynamic Vari-
able Ordering, which was extremely easy to
add given the architecture of our system. We
had hoped that this would provide a good per-
formance boost, and this immediately proved
to be the case. Results for Puzzle 1 are below
(with AC3 and CBJ on to avoid time-outs).

[15]

 Averages

 Label
Counter

Unlabel
Counter

CPU
Time
(sec-
onds)

noAC-
noFC-

noDVO-
chronBT

8,084,841 4,049,466 19.54

noAC-
noFC-
DVO-

chronBT

133 71 0.00061

AC3-
FC-

noDVO-
CBJ

33 15 0.033

AC3-
FC-

DVO-CBJ
37 16 0.0086

With FC off, this DVO clearly has a tre-

mendous impact, decreasing run-time by
around 4 orders of magnitude. This is due to
the tremendous decrease in the number of
calls to label and unlabel, thanks to the “intel-
ligent” ordering of variables assured by DVO.
Indeed, in the absence of FC, our results show
that DVO is the best of our three other exten-
sions to have (see tables in annex).

In the presence of FC however, the results
above for Puzzle 1 do not show a great im-
provement with DVO. The figures for harder
problems tell a different story. Here are the re-
sults for Puzzle 4:

 Averages

 CPU Time
(seconds)

Real Time
(seconds)

AC3-FC-
noDVO-CBJ 21.31 23.97

AC3-FC-
DVO-CBJ 4.87 4.87

Here DVO has a substantial impact

(roughly one order of magnitude) on run-time,
even in the presence of FC. We can conclude
that DVO is extremely important for an algo-
rithm which must scale well with problem dif-
ficulty. It is also interesting to note that DVO

is essentially “free” in terms of run-time when
couple with FC, as the smallest-current-
domain variable heuristic is sufficient.

Indeed, we evaluated multiple heuristics
for choosing the next variable in DVO. In par-
ticular we attempted various degrees of “look-
ahead”, for example by evaluating the number
of values which do not conflict with any cur-
rent assignment, rather than just considering
the current domain size (of course, with For-
ward Checking there is no difference). This
method turned out to be the most successful in
our experiments, and was retained subse-
quently for all our results whenever FC was
turned off.

5.3.3 Arc consistency
We next decided to implement a pre-
processing step, using arc-consistency. Indeed,
the CSP literature shows that methods such as
AC3 and AC5 can be very effective at simpli-
fying complex CSP’s. These methods also
have the advantage from an engineering per-
spective of being decoupled from the rest of
the algorithms, as they run once as a pre-
processing step, before the main solver. This
greatly facilitates debugging and good system
design. Our results on the base set of problems
were not clear-cut, as evidenced by these fig-
ures:

 Averages

 Label
Counter

Unlabel
Counter

CPU
Time

(seconds)
Puzzle 2

noAC-FC-
DVO-CBJ 732 436 0.019
AC3-FC-
DVO-CBJ 1472 864 0.074

Puzzle 4
noAC-FC-
DVO-CBJ 107,677 64,766 5.51
AC3-FC-
DVO-CBJ 97,904 58,819 4.86

[16]

Analyzing the results showed that is actu-
ally bad for over-all run-time performance on
the easier problems. However, on harder prob-
lems (i.e. puzzle 4 and harder) it has a notice-
able decreasing effect. We can once again ex-
plain this thanks to the label and unlabel
counts: AC3 reduces them even in the pres-
ence of FC and DVO. This is clearly worth the
time-cost of pre-processing in harder prob-
lems.

We implemented AC3 here, and had been
planning on implementing AC5 to make the
algorithm more efficient. However, profiling
our system’s runtime performance revealed
that the arc-consistency pre-processing step is
extremely fast relative to over-all runtime on
hard problems. AC5 would therefore have
provided a negligible performance boost, and
we thus decided not to pursue it.

5.3.4 Backjumping
The final algorithmic extension was to imple-
ment a form of back-tracking. We imple-
mented conflict-directed backjumping (CBJ),
but our performance results did not indicate a
great performance boost (especially with FC
or DBO running), as evidenced by the run-
time results here for Puzzle 1:

 Averages

 Jump
Count

Label
Counter

Unlabel
Counter

CPU
Time
(sec)

AC3-
FC-

DVO-
chronBT

0 37 16 0.0088

AC3-
FC-

DVO-
CBJ

0 37 16 0.0088

It is clear that while CBJ has some impact

in the absence of FC and DVO, it has no im-
pact whatsoever with them on. We hypothe-
sized that this was because we were rarely
“backjumping” back several levels (which is
the case in which CBJ has an advantage over

basic chronological backtracking). To evaluate
this hypothesis, we put in place “jump” count-
ers in our code. These show that the number
of jumps is always relatively low, and that
with Forward-Checking on we basically never
backjump multiple levels (see table above and
the Annex).

There are however some notable cases
(mainly with DVO on but FC off) in which
CBJ still has a strong run-time impact, despite
the small number of backjumps. This is the
case in the following results on Puzzle 4 for
example:

 Averages

 Jump
Counter

Label
Counter

Unlabel
Counter

CPU
Time
(sec)

noAC-
noFC-
DVO-
CBJ

3,310 49,539 27,820 1.21

noAC-
noFC-
DVO-

chronBT

0 1,636,240 1,026,021 30.14

Here CBJ decreases run-time by more than

one order of magnitude; the label and unlabel
counters show that this is due to a huge de-
crease in the number of these function calls.
Yet CBJ only jumped over 3310 levels (tiny
compared to the number of saved labels)! We
hypothesize that this is because some of the
variables skipped by these jumps would have
led to large search tree explorations, but were
unable to corroborate this hypothesis. Had we
had more time, we would have implemented
Dynamic Backtracking to see if it has more of
a performance impact than CBJ.

5.4 Algorithm variance analysis
Until this point we had been primarily consid-
ering aggregate average results in order to get
the “big picture”, to understand the general ef-
fectiveness of our algorithms. However, aver-
ages do not capture the variations in the re-

[17]

sults and performance of a given algorithm on
a given problem.

To evaluate this, we considered the stan-
dard deviation of the CPU run-time of a given
algorithm on a given problem for a set of 15

different random seeds. To account for the
fact that the different algorithms have very
different expected run-times, we normalized
the standard deviation relative to the expected
value, obtaining the following results.

Puzzle 1: Log of Standard Deviation of CPU Times (seconds)
Normalized by Expectation

0.01

0.1

1

10

AC3
-FC

-D
VO-C

BJ

AC3
-FC

-D
VO-ch

ro
nBT

AC3-FC
-n

oDVO-C
BJ

AC3
-FC

-n
oDVO-ch

ro
nBT

AC3
-n

oFC
-D

VO-C
BJ

noAC-FC
-D

VO-C
BJ

noAC-FC
-D

VO-ch
ro

nBT

noAC-FC-n
oDVO-C

BJ

noAC-FC
-n

oDVO-ch
ro

nB
T

noAC-n
oFC

-D
VO-C

BJ

noAC-n
oFC

-n
oD

VO-ch
ro

nBT

These results reveal that the four algo-
rithmic extensions we implemented have very
different effects on the variance of the per-
formance results:

 DVO greatly decreases the normalized
standard deviation (by roughly an order of
magnitude). A likely explanation for this
behavior is that without DVO a “bad”
choice of random seed can lead to a very
inefficient ordering of variables (with ex-
tremely large current-domain variables
first for example), whereas a “lucky” ran-
dom seed can make the same problem
very easy; DVO levels the field in this re-
spect, as it enforces a good ordering of
variables. One interesting anomaly is that
the solver with DVO on and everything

else off has higher normalized standard
deviation than any other solver.

 AC3 also has a very strong decreasing ef-
fect on variance. This is probably due to
the fact that arc-consistency prunes out
some obviously bad variable values,
which may otherwise have slowed down
the algorithm for “unlucky” random
seeds.

 FC has a slightly decreasing effect, but
primarily in the absence of DVO. The ex-
planation is similar to that of DVO.

 CBJ has little effect either way; this is no
doubt because of the general lack of ef-
fectiveness of this extension.

[18]

These variations in variance are theoretically
interesting, but can also have practical impor-
tance. Indeed, in a time-critical environment,
it is desirable to have algorithms with minimal
run-time variance (even at the expense of
some expected run-time), to be able to more
accurately plan time usage and avoid risking
running out of time.

5.5 Final results
5.5.1 Raw run-time performance
To take a step back and see the full picture of
our algorithm’s performance, we ran the full
stable of algorithms on the set of four prob-
lems, averaging over 15 different seeds. In
particular, we performed an ablation study by
trying removing each of the algorithm exten-
sions individually. The CPU time results are
below.

CPU Time Averages

0.0001 0.001 0.01 0.1 1 10 100

AC3-FC-DVO-CBJ

AC3-FC-DVO-chronBT

AC3-FC-noDVO-CBJ

AC3-noFC-DVO-CBJ

noAC-FC-DVO-CBJ

noAC-noFC-noDVO-chronBT

A
lg

or
it

hm
s

log10(Time in Seconds)

Puzzle 4

Puzzle 3

Puzzle 2

Puzzle 1

These results appear to be largely ho-

mogenous. We suspect that this is due to our
restart optimization method. While by and
large our restart optimization method im-
proved performance, we believe that it elimi-
nated many of the large distinctions between
the solvers and made many of our results
fairly random.

6 Future work
The results analysis we carried out throughout
our experimental phases revealed several de-

velopment and research paths to explore. In
particular we would like to extend the use of
heuristics from variable choosing (as in DVO)
to other parts of the CSP solver, notably the
choice of the next value to explore. There are
obvious heuristics for this (such as the least
constraining value heuristic), but one could
also imagine more complex approaches, with
a certain degree of look-ahead and pre-
processing for instance.

It would also be interesting to further ex-
plore backtracking/backjumping techniques.

[19]

Indeed, we had only limited success with
these approaches, and it would be instructive
to try to improve on this. In particular we
would evaluate Dynamic Backtracking rela-
tive to our current algorithms.

Additionally, an area which could be of
great practical importance is studying how to
do intelligent restarts and time-outs of our al-
gorithms. Indeed, performance can vary quite
widely depending on random factors (summa-
rized in our code by the random seeds), and
thus intelligent restarting strategies could
prove to be just as useful for CSP solving as in
hill-climbing SAT solvers, for example. Our
success with restarts that reshuffled the order
of each domain also suggests that developing
a preprocessing step that orders each domain
in a "good way" could be useful.

Finally, although all the problems we con-
sidered here were crosswords, we did not de-
velop any domain-specific heuristics or strate-
gies based on the nature of the puzzles (be-
yond our bit-set dictionary domain representa-
tion). There could potentially be huge per-
formance advantages to be had by taking into
account the very specialized nature of cross-
word problems.

7 References
[1] M. Ginsberg, et al, 1990. Search lessons learned

from crossword puzzles. In Proc. of AAAI-90.

