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1 Introduction 
Crossword puzzles, in addition to being a 
hobby of potentially millions of people around 
the world, are an excellent test bed for evalua-
tion of constraint satisfaction algorithms. A 
solution to a crossword puzzle is an assign-
ment of words to a grid such that each word 
meets a number of constraints: a semantic 
constraint provided by the clue (which we do 
not take into account here), a length constraint 
provided by the grid, and constraints on its let-
ters provided by the words which it overlaps 
in the grid. Below are the four crossword puz-
zles that we used as test problems in this as-
signment for our algorithms.   

 

 
Puzzle 1 

 

 
Puzzle 2 

 
 
 

 

 
Puzzle 3 

 

 
Puzzle 4 

There are two approaches one can take to 
model these crossword problems as CSPs: a 
word based approach and a character based 
approach. In the character based approach, we 
consider the set of white squares to be our set 
of variables. Thus the domain of each square 
is the set of permissible characters (94 ASCI 
characters in this case). The requirement that 
each vertical or horizontal alignment of 
squares must constitute a dictionary word 
forms the constraint set (thus we have non-
binary constraints).  
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In the word-based approach, we consider 
each word (i.e. a horizontal or vertical align-
ment of white squares) in the crossword puz-
zle to be a variable. Thus the domain for each 
variable is the set of dictionary words of the 
corresponding size. The constraints are the 
overlap conditions imposed by the grid: 
whenever two words overlap, they must share 
the same letter in the overlap position (thus 
the constraints are all binary, although one can 
also consider the requirement that each word 
value be in the dictionary to form a unary con-
straint).  

There is clearly a trade-off between the 
two approaches: with the character-based ap-
proach, the variables have very limited do-
mains (94 possible values, as opposed to tens 
of thousands of potential words in the word-
based approach), while the word-based ap-
proach has relatively simple binary con-
straints.  

However, the primary reason against 
choosing the word-based approach, the large 
domain size, can be mitigated by developing 
fast and efficient word-lookup methods, which 
are provided by the bit-set dictionary system 
explained in Section 3. We were further 
swayed towards the word-based approach by 
Ginsberg’s paper on the subject [1]. 

In this paper, we begin by describing the 
algorithms we used to solve the CSPs, then the 
optimizations we use to take advantage of the 
structure of crossword puzzles. We then de-
scribe our results, the conclusions we drew 
and the reasons. Finally we conclude and give 
ideas for future work.  

2 Algorithms 
All the algorithms we implemented have three 
main common functions – label, unlabel, 
chooseNextVariable. 

2.1 Backtracking 
These algorithms check backwards, from the 
current variable against the past variable. It is 
a depth-first search technique that chooses 

values for one variable at a time, and back-
tracks when a variable has no legal values in 
its domain left to assign.  

2.1.1 Chronological Backtracking 
This technique withdraws the most recently 
made choice, the consequences of the recent 
choice, selects a different alternative at that 
point and moves ahead again. If the point 
backtracked to has been explored previously, 
it withdraws further until an unexplored alter-
native comes up. In label we loop through the 
current domain of the variable i being as-
signed a value and check if it is consistent 
with the other variables with which i has con-
straints. In the case that the value is not con-
sistent it just picks the next value in the do-
main of i and runs checks again. In unlabel we 
backtrack to the previous level and remove the 
assigned value for i from its domain and also 
unassign i. chooseNextVariable chooses the 
next variable by a static ordering, chronologi-
cally.  

The problem that is apparent with this 
technique is that many of the points it back-
tracks to have nothing to do with the dead-end 
it had encountered and thus is inefficient.  

2.2 Back jumping 
One way of doing informed backtracking is 
called back-jumping. This approach goes back 
directly to the point (or variable) which caused 
the dead-end or failure to the most recent as-
signment.  
 

2.2.1 Conflict directed back jumping 
This is a simple variant of back jumping 
which uses a set of variables, called conflict 
set, which consists of all the variables that 
have constraints with the variable being as-
signed a value. This approach backtracks to 
the most recent variable in this set. This is im-
plemented by accumulating this set while 
checking for domain values that satisfy a con-
straint for a variable and when a domain wipe 
out happens, the conflict set is used. In label 
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we try to assign a value to variable i from its 
domain that is consistent with all the other 
variables it has constraints with. In case there 
is a conflict with any variable, we add it to the 
conflict set and we remove that value from i’s 
domain and move through the other values in 
the domain. In unlabel we pick the deepest 
level from the conflict set and unassign the 
variables whose values have been set from 
that deepest level to the current level and also 
reset their domains. chooseNextVariable goes 
chronologically.  

2.3 Forward Checking  
Forward checking makes additional use of 
constraints by looking at each unassigned 
variable connected to a variable by a con-
straint when assigning it a value, in order to 
predict future domain wipe-outs. In forward 
checking, for each variable i we keep three 
stacks, reductions_i, pastfc_i, and future-fc_i. 
The reductions stack for a variable i, reduc-
tions_i, keeps elements that are lists of values 
in the domain of i disallowed by previously 
instantiated variables. That is, a variable in-
stantiated earlier in the search than i removed 
some set of values from i’s domain, and these 
are kept on the reductions_i stack. Past-fc_i is 
a stack of the levels in the search that have 
checked against variable i, while future-fc_i is 
the stack of future variables against which i 
has checked. 

In forward checking’s labeling step, we it-
erate over all the variables that have not yet 
been assigned, checking the currently instanti-
ated variable against them. After attempting to 
instantiate a variable i, for every variable j that 
remains unassigned we remove the possible 
values for j that do not meet the constraints 
between i and j. For every j, we add to reduc-
tions_j all values from j’s domain that has 
been eliminated by constraints with xi, and we 
push variable j onto future-fc_i, since j comes 
after xi in the search. We also push the current 
level onto pastfc_j. In the unlabelling step, we 
move to the previous level update the domains 

back to undo the changes, undo the reductions, 
and unassign the variables previously assigned 

If any of the unassigned variable’s do-
mains has a value that is inconsistent with the 
assignment it deletes the value from that vari-
ables domain. We can thus see that this proce-
dure makes it easy for collecting the conflict 
set elements. Whenever forward checking 
based on an assignment for variable i deletes a 
value from another variable j, it should just 
add i to j’s conflict set. During this process if 
variable j’s domain empties out, then j goes 
into the conflict set of i. It can also be said that 
forward checking is better than back jumping 
because it draws the final conclusion faster 
than back jumping, saving some redundant it-
erations.  

2.4 Dynamic Variable Ordering 
The order in which variables are assigned val-
ues can be of two types: static and dynamic. 
Static ordering is when we always know that 
variable i will be assigned a value before vari-
able j. In Dynamic Variable Ordering (DVO) 
the search process determines which variable 
is to be assigned based on the state of the 
search process. Static variable ordering is 
what we use when we do not use dynamic or-
dering. This ordering is said to have a very 
high role in the efficiency of constraint satis-
faction problem solutions. The heuristic we 
use for DVO is called minimum remaining 
values (MRV).  

2.4.1 Minimum Remaining Values 
The first variable is assigned without DVO 
and then onwards the MRV function is called. 
This technique checks each value in the do-
main of each unassigned variable to see if that 
value is consistent with the set of assignments 
made so far. It then keeps a count of the re-
maining values in each variable’s domain that 
is compatible with the current set of assign-
ments and returns the variable with the mini-
mum of this count.  
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2.5 Arc Consistency-3 
One common technique used to increase the 
efficiency of these algorithms is to prune the 
search space prior to processing these tech-
niques. This is done by a technique called 
Constraint propagation, propagating the impli-
cations of a constraint on one variable onto 
other variables. This is to reduce the amount 
of search time afterwards. The term Arc refers 
to the directed constraint from one variable to 
another variable and thus shrinks the search 
space by removing the un-supporting values 
from variable’s domains, which corresponds 
to an early detecting of inconsistencies. A 
variable x’s value is unsupported if there is a 
constraint on the variable such that there are 
no instantiations of other variables that satisfy 
the constraint when x is set to v.  

AC-3 is one such arc consistency algo-
rithms and works in two steps. It first iterates 
over every variable x, checking whether its 
values are supported in each constraint over x 
and simultaneously it queues the unsupported 
values it has removed. It then dequeues the 
previously removed unsupported values, 
checking whether the removals have caused 
more values to become unsupported. Any 
newly unsupported values it places on the 
queue and continues dequeueing until it gets 
to the point where the queue is empty. This 
happens when no more values become unsup-
ported, and we are guaranteed termination be-
cause there only finitely many values that can 
be removed.  

3 Optimizations 
Caching and other optimizations are essential 
for creating usable CSP solvers. Like our pre-
vious project's SAT solvers, we developed our 
CSP algorithms with efficiency in mind. Our 
optimizations include managing our own 
memory for most data structures (no STL 
Vectors), not allowing duplicate arcs in our 
AC3 queue, indexing character occurrence in 
domains using bitsets, and several other mem-
ory allocation tweaks. 

3.1 Memory Management 
Keeping with the spirit of our efficient SAT 
solvers, we again do not use the C++ Standard 
Template Library (STL) Vector class to store 
our data. Instead, we use our own data struc-
ture called superArray, which is a templated 
class that simply contains an integer called 
length and a pointer to an array of whichever 
data type the superArray stores. The class con-
tains two functions, allocate for allocating a 
set size and wipe for deleting the dynamically 
allocated memory. Items in the array are ac-
cessed directly using the pointer. 

We do not use the Vector class because of 
the overhead associated with its resizable ar-
ray properties and its out-of-bounds checking. 
While these features are important in many 
settings, they are only barriers in our quest for 
speed and efficiency. In our previous report 
about our SAT solvers, we presented a simple 
experiment that shows how our data structure 
is much faster than using the Vector class 
when performing reads and writes. One lack-
ing element of our experiment was that it in-
volved repeatedly reading and writing to the 
arrays and did not include any attempt to 
measure the speedup in our application do-
main. We expand upon our previous experi-
ment here and present the effects of using our 
own data structure on crossword CSP solving. 

The Vector class contains two methods for 
accessing elements in the internal array. The 
first method, which we will refer to as Op, is 
through the overloaded [ ] operator. Op does 
not perform out-of-bounds checking. The sec-
ond method, which we will refer to as At, is 
through the at() function. As one would guess, 
At is different from Op in that it performs out-
of-bounds checking. 

First, we ran a modified version of our 
original experiment, which is located in Test-
Vector.h within our source code, on the ma-
chines described in Section 4 of this report 
(Dell Precision 390 with a 2.4 GHz Core 2 
Duo and 2 GB of RAM running Ubuntu). The 
experiment performed 4 billion reads and 4 
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billion writes using each method (Op, At, and 
our superArray), with all memory allocated 
before beginning the test. We executed the test 
ten times and measured CPU processing time 
instead of real time. Table 3.1.a shows, as ex-
pected, that our superArray direct access 
method was about 1.5 times faster than Op on 
reads/writes and 5.5 times faster than At. 

 
Table 3.1.a: TestVector.h Computation 

Time Relative to superArray 
 

 Reads Writes 
superArray 1.0 1.0 
Vector Op 1.4 1.7 
Vector At 5.5 5.5 

 
In an effort to prove that using our su-

perArray has a measureable impact on the per-
formance of our CSP algorithms, we included 
a preprocessor define statement VEC-
TOR_TEST in data_structures.h. When VEC-
TOR_TEST is set to false, all of our algo-
rithms use our superArray direct access 
method. When VECTOR_TEST is set to true, 
our algorithms use a Vector class in place of 
the pointer within superArray and access ele-
ments using the Op method. Thus we have a 
compile-time switch that allows us to specify 
which data structure our algorithms use. 

Regardless of which data structure is used, 
we still perform all of the memory allocation 
tweaks and other optimizations described later 
in this section. We ran our CSP solver with all 
features turned on (AC3, forward checking, 
dynamic variable ordering with the minimum 
remaining values heuristic, and conflict-
directed backjumping). We measured CPU 
time and executed the experiment on the same 
machines as before, averaging over ten execu-
tions. We timed the two versions of our solver 
on the puzzles contained in the file "puz-
zlesWithHardStuff", which is included in our 
source. This puzzle file contains the four puz-
zles described in Section 1, as well as a 26-by-
26 cell puzzle that was created by taking four 
copies of Puzzle 3 and arranging them to form 

a square and a 37-by-37 cell puzzle that was 
created by taking nine copies of Puzzle 3, ar-
ranging them in a similar manner, and remov-
ing the right two columns and bottom two 
rows. 

Table 3.1.b presents the results of this real-
world experiment. Our superArray method 
was 1.02 times faster than the Vector Op 
method. While this is certainly not a drastic 
improvement, it is a measurable improvement 
nonetheless. Additionally, while Vector pro-
vides automatic resizing functionality that su-
perArray does not include, both methods do 
not perform out-of-bounds checking. Since we 
do not require array resizing, and in fact we 
pre-allocate all memory at the beginning as 
described in Seciton 3.4, there is no reason to 
use the Vector Op method when our superAr-
ray gives a slight performance boost. 

 
Table 3.1.b: 

Crossword CSP Computation 
Time Relative to superArray 

 

superArray 1.0 
Vector Op 1.02 
Vector At 1.18* 
*Estimated using relative read / 
write times from Table 3.1.a. 

 
Since we do not require array resizing, the 

only advantage of using Vector is the out-of-
bounds checking in At. Using the relative 
read/write computation times from Table 3.1.a 
and the result of our real-world experiment, 
we estimate that our superArray method is 
1.18 times faster than using the Vector At 
method. While out-of-bounds checking can 
help decrease the amount of hard to find bugs, 
we do not believe the potential development 
time benefit makes up for the performance de-
crease. (We just love memory corruption 
bugs.) We unfortunately cannot use the VEC-
TOR_TEST switch to obtain exact results of 
using Vector At because the switch took ad-
vantage of the fact that the superArray and 
Vector Op methods both use brackets [ ] to 
access the array members. 
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3.2 Faster AC3 
Traditional AC3 uses a queue to maintain the 
arcs that need to be processed. When running 
the algorithm on a small testing puzzle as it is 
traditionally defined, we found instances 
where the algorithm would process the same 
arc back-to-back or have the same arc in the 
queue multiple times (but separated by other 
arcs). Both of these cases resulted in redun-
dant processing that reduced the speed of the 
algorithm. 

To solve this problem, we created a sec-
ond version of AC3 that uses a set, which does 
not allow duplicate arcs, instead of a queue. 
This modification was relatively easy and only 
required changing four lines of code. Our 
hope was that the performance gains from not 
processing arcs multiple times would be 
greater than the computation time required to 
maintain that set's unique item property (no 
duplicate arcs). Our experiments running both 
versions of AC3 on multiple puzzles shows 
that this was indeed the case. 

We ran both versions of AC3 on three dif-
ferent puzzle collections. Collection 1, con-
tained in the file "puzzlesAC3," consisted of 
80 copies of Puzzle 4. Collection 2, contained 
in the file "puzzlesAC3_blank," consisted of 
80 copies a blank 13-by-13 puzzle (no black 
squares). Collection 3, contained in the file 
"puzzlesAC3_hard," consisted of 40 copies of 
the 37-by-37 puzzle that is described in the 
previous section. We conducted the experi-
ments on the same machines as our other tests. 
Aside from measuring CPU time, we also in-
cluded checks at the end to make sure that the 
result of both versions were identical. 

Table 3.2 shows the results of these ex-
periments. In all cases, the output of AC3 was 
identical with both versions. Using a set is 1.5 
to 2.2 times faster than using a queue. We ini-
tially believed that we would find greater 
speedup as we increased the number of con-
straints within the puzzle because the set ver-
sion would eliminate the processing more du-
plicate arcs, which was our motivation for 

creating Collections 2 and 3 after running the 
experiment on Collection 1. 

Our results show that this is not necessar-
ily the case. While moving from Collection 1 
to Collection 2 follows our hypothesized trend 
of greater speedup, moving from Collection 2 
with 338 constraints to Collection 3 with 
1,972 constraints actually reduces the 
speedup. Despite this result, we still believe 
that the relative trend of greater speedup as the 
constraint count increases. 

 
Table 3.2: AC3 with a Set vs. 

AC3 with a Queue 
 

Collection Constraints 
Per Puzzle 

Set CPU 
Time 
Per 

Puzzle 

Set 
Speedup 

1 264 0.06 
seconds 1.54 

2 338 0.16 
seconds 2.23 

3 1972 0.53 
seconds 1.65 

3.2.1 A Revised Hypothesis 
We believe that the difference in speedup be-
tween Collections 2 and 3 is because of the 
different distribution of constraints that each 
puzzle contains. Collection 2 contains no 
black squares, so every word has a constraint 
on every letter. Collection 3 has many black 
squares that are arranged in a similar manner 
to Collection 1. Collections 1 and 3, which 
have similar distributions for the constraints 
on each variable, show the trend of the AC3 
set version's speedup increasing as the amount 
of constraints increases. 

We created additional puzzle collections to 
test our revised hypothesis that, when compar-
ing processing time on puzzles that share the 
same distribution of constraints on variables, 
an increase in the number of constraints will 
result in a greater speedup from using AC3 
with sets over AC3 with queues. We ran the 
previous experiment on 6 different puzzle sets, 
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which we will ball Blank 13 through Blank 
18. Each puzzle set contained no black 
squares and thus every word has a constraint 
on every letter. Each set contains 80 puzzles. 
The number in each set's name indicates the 
size of the puzzles. Therefore Blank 13 con-
tains 80 13-by-13 blank puzzles. Note that 
Blank 13 is the same as Collection 3 in the 
previous experiment. Blank 14 through Blank 
18 are contained in "puzzlesAC3_blank14" 
through "puzzlesAC3_blank18" respectively. 

Table 3.2.1 shows the results of running 
our new experiment on the same machines as 
before. Our hypothesized trend appears to 
hold true for Blank 15 through 18, but the set 
speedup for Blank 14 is more than twice the 
speedup of any other puzzle set. While the re-
sults do not prove our hypothesis, we still 
have an inkling that our revised hypothesis is 
true. 

The primary problem with this latest ex-
periment is that we are not accounting for the 
fact that the domains of the variables com-
pletely change from one puzzle size to the 
next. In Blank 13, all variables are words of 
length 13 while in Blank 17 all variables are 
words of length 17. Thus the variable domains 
in the Blank 13 puzzle are not of the same size 
as the domains in the Blank 17 puzzle. Addi-
tionally, the actual distribution of possible 
characters at each location in each word is dif-
ferent across the puzzle sets. To solve these 
problems one would need to create a normal-
ized dictionary that, for example, contains the 
same probability of an 'A' occurring as the 
first letter of a word regardless of word length. 
Unfortunately, we did not have enough time to 
pursue this extension. 

3.2.2 Faster AC3: Does It Matter? 
While using a set instead of a queue can make 
AC3 up to 4.8 times faster, the fact remains 
that in our crossword puzzle setting AC3 takes 
less than one second to complete. Indeed, the 
pre-processing arc-consistency step is gener-
ally very fast relative to over-all algorithm 
run-time. Thus, by Amdahl’s law, any speed 

improvements to AC3 are limited to this small 
fraction of over-all system performance.  

However, as we discuss in our experimen-
tal results below, our fastest solvers frequently 
solve crossword puzzles in less than one sec-
ond. Therefore in this setting, our reduction in 
AC3 computation time is significant in that it 
allows AC3 to actually be useful in some 
cases. 

 
Table 3.2.1: AC3 with a Set vs. 

AC3 with a Queue 
 

Blank Constraints 
Per Puzzle 

Set CPU 
Time Per 

Puzzle (sec) 

Set 
Speedup 

13 338 0.16 2.23 
14 392 0.06 4.83 
15 450 0.03 1.76 
16 512 0.03 1.88 
17 578 0.04 1.89 
18 648 0.04 1.89 

 

3.3 Managing Domains 
Our most important optimization is our man-
aging of each variable's domain. In all of our 
experiments, we use a dictionary of roughly 
20,000 words. Each word in our dictionary 
can contain ASCII characters ranging from 33 
(!) to 126 (~), with all lowercase letters 
mapped to their corresponding uppercase let-
ters. This results in 94 possible characters. De-
spite uppercasing all letters, we left our man-
agement system treating lowercase letters as a 
possibility so that we could turn off the upper-
casing policy if we desired. Including lower-
case letters as a possibility without actually 
using them only slightly increases memory 
usage and does not increase processing time 
except for when reading in the dictionary. Due 
to the amount of words that could possibly be 
in a variable's domain, if we were to maintain 
each variable's domain as an array of strings, 
we would end up spending much of our time 
managing these arrays rather than solving the 
problem. 
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3.3.1 A Motivating Example 
Suppose we have a variable V that is a 5-letter 
word with constraints on its first and fourth 
letters. Our dictionary contains 3,169 5-letter 
words, so V's initial domain size is a little over 
3,000. Now suppose need to apply V's two 
constraints, with 'A' as the first letter and 'E' as 
the fourth. Without considering how we will 
store this restricted domain, to apply the con-
straints we must loop through all 3,169 words 
and perform a check against their first and 
fourth letters. 

Now suppose V's domain was reduced to 
zero, so we back track and then return to 
choosing a value for V given the new con-
straints that the first letter is 'A' and the fourth 
letter is 'L'. Again, to calculate the restricted 
domain we must loop through all 3,169 words 
and perform a check against their first and 
fourth letters. 

As one might notice, this management 
scheme is incredibly slow because we are per-
forming checks against every 5-letter word 
during every restriction. The commonality be-
tween the previous two restrictions is that in 
both cases we required the first letter to be 'A'. 
If we stored the restricted domain for the first 
letter being 'A', then to apply the second con-
straint on the fourth letter we could simply 
loop through the stored restricted domain and 
perform one letter check instead of looping 
over all 3,169 words and performing two letter 
checks. 

3.3.2 Our Solution 
This storing of restricted domains, which is 
proposed in the Ginsberg 1990 paper men-
tioned in the project handout, is the idea be-
hind our domain management scheme. When 
reading in the dictionary, for each word length 
L we create a 94-by-L array of bitsets with in-
dexing starting at zero. Each bitset contains 
one bit for each word of length L. If a word's 
bit is equal to one then the word exists in the 
domain that the bitset represents. 

The index of the 94 rows indicate which 
character the row of bitsets belongs to, with '!' 

being at index 0 and '~' being at index 93. The 
index into the L columns indicates the position 
in the L-letter word. The bitset at row A and 
column B represents the domain for an L-
letter word that contains the sole restriction of 
having the character indicated by A at location 
B in the word. In our original implementation 
all variables of the same word length share the 
same array of bitsets, but, as we will discuss in 
Section 4, to satisfy the project's requirements 
of randomization our current implementation 
maintains an separate array of bitsets for each 
variable. 

Thus for our variable V, we have a 94-by-
5 array of bitsets with each bitset containing 
3,169 bits. In our example where V requires 
the first letter to be 'A' and the fourth to be 'E', 
we simply have to perform a bitwise AND op-
eration on the bitset at row 32 and column 0 
and the bitset at row 36 and column 4. The 
first bitset contains ones for all 5-letter words 
that contain 'A' as the first letter. The second 
bitset contains ones for all 5-letter words that 
contain 'E' as the fourth letter. Thus the bit-
wise AND operation will result in an intersec-
tion of the two sets and will contain ones for 
all 5-letter words that contain 'A' as the first 
letter and 'E' as the second letter. 

3.3.3 Empirical Comparison 
These operations on sets of bits are signifi-
cantly faster than looping through all of the 
words of the correct length and performing 
checks on specific characters. To show this, 
we conducted a simple test of repeatedly com-
puting the restrictions in our previous example 
with variable V. We were not able to compare 
the relative performance of both methods on 
the actual crossword puzzle solving problem 
because, as we will discuss in Section 3.3.4, 
the bitset method requires changing the struc-
ture of the CSP algorithms to specifically take 
advantage of the bitwise operations. 

In this simple experiment, which is the 
Dictionary::timeTest function in our code, we 
repeatedly restricted the domain of a 5-letter 
word V by the constraints that the first letter is 
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'A' and the fourth letter is 'E'. Instead of actu-
ally creating the list of words that satisfy the 
restrictions, we only computed the amount of 
words that satisfy the restriction. Thus for the 
non-bitset method we loop through all 3,169 
words, perform two equality checks (one for 
'A' on the first letter, the other for 'E' on the 
fourth letter), and increment a counter if both 
checks return true. For the bitset method we 
perform a bitwise AND operation on the two 
bitsets as described in the previous section. 

We performed the restriction 5 million 
times and calculated per restriction processing 
times by dividing the total time by 5 million. 
We measured CPU time and used the same 
machines as the previous experiments. We ex-
cluded the time required to generate the arrays 
of bitsets for each word length from the bitset 
method's recorded time, but this computation 
time is included in the analysis. 

Table 3.3.3 shows the results of our ex-
periment. The bitset method is an order of 
magnitude faster than the non-bitset method, 
but it incurs a preprocessing penalty of 0.03 
seconds to create all of the bitsets when read-
ing in the dictionary. Since the bitset method 
is an order of magnitude faster, one only needs 
to perform 671 restrictions in order to break 
even due to the 0.03 second preprocessing 
cost. As our results in Section 5 will show, we 
perform far more than 671 restrictions (in fact, 
our algorithms perform millions or billions of 
restrictions). Thus the bitset method is essen-
tial to fast crossword puzzle CSP solving. The 
bitset method also incurs an additional cost of 
space, but when variables whose words are of 
equal length share the same bitset arrays the 
space cost is only 2.7 MB. 

Another important positive point of our 
simple experiment is that in the bitset method, 
in order to calculate the amount of words that 
satisfy the restriction, we actually compute the 
list containing the restricted domain and then 
count the amount of bits set to one. Thus in 
our experiment the bitset method is both com-
puting the restricted domain and the size of 

the restricted domain, while the non-bitset 
method is only computing the size and would 
have to populate some other data structure to 
generate the restricted domain. 

 
Table 3.3.3: Comparison of 

Domain Management Methods 
 

Bitset CPU Time 
Per Restriction 5.3 x 10-6 sec. 

Non-bitset CPU Time 
Per Restriction 5.0 x 10-5 sec. 

CPU Time to 
Generate All Bitsets 0.03 sec. 

Restrictions Required to 
Break Even 671 restrictions 

Memory Required to 
Hold Bitsets 2.7 MB 

3.3.4 CSP Algorithm Adaptation 
Due to our domain-specific approach for man-
aging domains, we had to restructure the stan-
dard vanilla CSP algorithms presented in Sec-
tion 2. In this section we describe how we 
modified several of the standard algorithms to 
use our domain management scheme. 

3.3.4.1 Chronological Backtracking 
The standard routine for labeling a variable V 
is to loop through each value in V's current 
domain and check if the value violates a con-
straint with any of the previously assigned 
variables. If the value does not violate any 
constraint then that value is chosen as V's as-
signed value and the search moves on trying 
to assign values to other variables. 

Unfortunately, we cannot follow this pro-
cedure when using our bitsets because we use 
the AND operation to compute the entire re-
striction on a domain in one swoop. Thus our 
standard label function, which is 
CSPSolver::label() in our source, is slightly 
different. First, we apply all restrictions that 
exist due to any of the previously assigned 
variables having a constraint with V. We then 
pick the word that corresponds to the first one 
bit in the resulting bitset. If we for some rea-
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son or another return to labeling V because the 
first value did not work, then we find the next 
one bit in the bitset, pick its corresponding 
word, and do not apply the restrictions again. 
If all of V's values failed to work, then we re-
store V's domain in the unlabel function and 
the next time we try to label V we compute 
the new restricted domain and start over. 

 

3.3.4.2 Conflict-Directed Backjumping 
The standard label routine of conflict-directed 
backjumping contains a slight modification to 
the chronological backtracking routine. 
Whenever one of V's values violates a con-
straint with some previously assigned vari-
able, we add the previously assigned variable 
to V's conflict set. We handle this slight modi-
fication, which is CSPSolver_CBJ::label() in 
our source, by calculating the restricted do-
main with one constraint restriction at a time. 
After applying the restriction induced by a 
constraint, we check whether the size of the 
domain has changed. If the size decreased 
then that means that there were values in V's 
domain that violated the constraint, so we add 
the previously assigned variable that corre-
sponds to the constraint to V's conflict set. 

 

3.3.4.3 Forward Checking 
Forward checking involves computing and 
storing reductions, which are lists of values 
that were removed from a domain. The bitset 
method for computing reductions is quite ele-
gant. We simply store the current domain's 
bitset, restrict the current domain by the given 
restriction imposed by a constraint, and then 
perform a bitwise XOR operation on the old 
and new current domains to generate the list 
of values that were removed. We can then re-
store the reduction by performing a bitwise 
OR operation between the current domain and 
the reduction. 

 

3.3.4.4 AC3 
AC3 includes a function that takes in two 
variables V and W and removes inconsistent 
values from the domain of V based on the 
constraint between V and W. The routine 
loops through all values in V's domain and 
checks if W's domain contains a value that al-
lows the pair of values to satisfy the constraint 
between V and W. The function removes the 
value from V's domain if no such pair exists. 

In our routine, we start by storing the loca-
tion of the constraint for each variable with 
loc_V holding the restricted location in V's 
word and loc_W holding the restricted loca-
tion in W's word. Then for each character C of 
the 94 valid ASCII characters, we restrict W's 
domain with the restriction that the letter at 
loc_W is C. If the resulting domain is empty 
then we need to remove all words from V's 
domain that contain C at loc_V. To do this we 
store V's domain in a temporary bitset Dtemp, 
restrict V's domain by C at loc_V, perform a 
NOT operation on the restricted bitset, and 
then perform an AND operation on Dtemp and 
the result of the NOT operation, storing the re-
sult as V's base domain. The only other key 
detail is that one must remember to restore the 
domains to their base domains before proceed-
ing to the next character C. 

3.4 Memory Allocation and Quick 
Insertions 

As we noticed when creating our SAT solvers, 
memory allocation can be costly. To reduce 
the amount of memory allocation required 
during the search, we allocate all data struc-
tures before starting the label/unlabel loop. 
While this step is obviously required for the 
domain caching structure, it is less obvious for 
structures such as the list of variables with the 
best score in our dynamic variable ordering 
method. We allocate a superArray for this list 
at the beginning of the label/unlabel loop, 
making its size the same as the number of 
variables in the CSP. Instead of using the su-
perArray's length attribute to indicate the 
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amount of space allocated in the array, we use 
it to indicate the amount of variables that are 
actually in the list. Thus whenever we choose 
the next variable to label we do not need to al-
locate memory for the list and instead set the 
length to zero and start filling the list. We also 
pre-allocate our confSets and other structures 
to their potential maximum size before enter-
ing the label/unlabel loop so that we never 
have to reallocate memory due to resizing re-
quirements. Additionally, we make every at-
tempt to use pointers and not invoke a copy 
constructor anywhere in each solver's code. 

3.5 Restart Timeouts 
We found that many of our algorithms were 
susceptible to bad luck on their initial seed 
values for the random number generator. As 
discussed in Section 4.3, we randomize our 
choices for equally good variables. We also 
randomize the order that values in each vari-
able's domain are considered by shuffling the 
words in each variable's domain when reading 
the dictionary and puzzles from their respec-
tive files, as described in Section 4.3. We 
found that the ordering of the domains had 
significant implications on runtime. For ex-
ample, with all of our features turned on 
(AC3, conflict directed back jumping, forward 
checking, and dynamic variable ordering with 
the minimum remaining values heuristic), our 
solver could often solve Puzzle 4 in around 
0.28 seconds, but with unlucky seed values the 
solver would require at least several minutes 
to find a solution. 

An obvious insight from these observa-
tions is that periodically restarting with a re-
shuffled ordering for each domain could dras-
tically improve overall performance. To fix 
this problem, we implemented an increasing 
restart timer that allows the algorithm addi-
tional time between restarts as the number of 
restarts increases. The initial execution length 
and the multiplier that increases the length of 
time allowed for the next run can be specified 
on a per solver basis, but we did not have suf-

ficient time to run experiments with the vari-
ous algorithms to find optimal values for each 
solver. 

For our solvers using forward checking, 
we set the execution length of the first run to 
0.75 seconds and the multiplier to 1.1. Thus 
the first run is allowed to execute for 0.75 
seconds, the second run for 0.825, and the 
third run for 0.91 seconds. For our other 
solves, we set the execution length of the first 
run to 60 seconds and the multiplier to 2. Ad-
ditional discussion on randomization and how 
we ensure deterministic behavior (for repeat-
ability of experiments) given the same initial 
seed value is included in Section 4.3. 

4 Experimental Method 
We conducted all of our experiments on the 
Pod cluster. The Pod cluster contains Dell 
Precision 390s, each with a 2.4 GHz Core 2 
Duo and 2 GB of RAM running Ubuntu 7.04. 
All results in Section 5 are from running each 
solver on the four crossword puzzles using 15 
different seeds for the random number genera-
tor. We decided on the fixed 15 specific seed 
values to use by seeding the random number 
generator with the clock's time and then print-
ing out 15 random numbers. The readme in-
cluded with the source describes how to spec-
ify your own seed or which of our 15 seeds to 
use. 

4.1 Naming Conventions 
In all results we refer to forward checking as 
FC, dynamic variable ordering with the mini-
mum remaining values heuristic as DVO, con-
flict directed backjumping as CBJ, and 
chronological backtracking as chronBT. The 
naming convention for solvers is AC3?-FC?-
DVO?-CBJ?. With the exception of 
CBJ/chronBT, if the particular feature is 
turned off then it has the word "no" in front of 
it. Thus the solver that uses AC3, has FC off, 
uses DVO, and uses CBJ has the name "AC3-
noFC-DVO-CBJ". 
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Through all of our experiments we gath-
ered results for all combinations of AC3 
on/off, FC on/off, DVO on/off and CBJ 
on/off. Several of these combinations pro-
duced solvers that could not solve the prob-
lems, so we imposed a timeout limit of 10 
minutes. The solvers of primary important to 
this study (the solver with all features turned 
on and all of the solvers with only one feature 
turned off) were all able to find solutions with 
each seed in less than 10 minutes. 

4.2 Our Performance Metrics 
We track six metrics: Restrict Domain 
Counter, Jump Counter, Label Counter, Unla-
bel Counter, CPU Time, Real Time and Re-
start Counter. Restrict Domain Counter is the 
number of times that the solver restricts a do-
main by ANDing the current domain of a 
variable with some bitset. The Jump Counter 
is the number of levels that are jumped over 
when backtracking (this value is zero when 
CBJ is turned off). Label Counter is the 
amount of times we attempt to label a variable 
and Unlabel Counter is the amount of times 
we unlabel a variable. Restart Counter is the 
number of times the solver restarts the search 
and reshuffles the ordering of each domain. 

The CPU Time and Real Time are both in 
seconds. Since our CPU timer less reliable for 
runtimes close to zero, we record the Real 
Time for both CPU Time and Real Time when 
the reported CPU Time is less than one. CPU 
Time and Real Time do not include the proc-
essing time for reading in the crossword puz-
zles/dictionary or creating the arrays of bitsets. 
The timing starts when the function 
CSPSolver::solveCSP is called. 

4.3 Randomization 
The random number generation is invariant to 
the amount of puzzles in the puzzles file, the 
order that the puzzles are solved, and the spe-
cific puzzles in the puzzles file. Thus if the 
puzzles file has only the four standard puzzles 
in it, given a specific seed the output of the 

smallest puzzle when it is the first puzzle in 
the file will be the same as the output when it 
is the last puzzle in the file. We achieve this 
by seeding the random number generator with 
the specified seed before each crucial section 
of code. Our seed points are: when we read in 
the dictionary, when we start to read a new 
puzzle from the puzzle file, and just before we 
call CSPSolver::solveCSP. 

To find a variety of solutions we randomly 
pick variables when choosing the next vari-
able to label if multiple variables exist that are 
equally good. When not using dynamic vari-
able ordering, this involves randomly picking 
a variable in the variablesNotLabeled array. 
When using dynamic variable ordering, this 
involves randomly picking a variable from the 
array of variables with the smallest domain 
size. 

We also randomly shuffle the domains of 
each variable. When creating the domain for 
each variable, we take the array of words for 
the given word length, loop through each in-
dex randomly swapping the word at the given 
index with another word in the array, and then 
create the array of bitsets. Thus all variables of 
the same word length loop through their do-
mains in a different order. 

On must take special care to ensure deter-
ministic behavior given a seed when using our 
restart optimization in Section 3.5. In a tradi-
tional timeout scenario, one would set a time-
out of say 30 seconds and force an automatic 
restart once the elapsed CPU time is greater 
than 30 seconds. The problem with this 
method is that the timeout due to the elapsed 
CPU time check is not guaranteed to occur on 
the same iteration of the search loop during 
each execution. If the timeout does not occur 
on the same iteration during each execution 
then across different executions of the pro-
gram a different number of random numbers 
will be generated for a given run. This will re-
sult in different outputs because the restarts 
will be effectively starting the search at differ-
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ent points of the pseudorandom number gen-
eration based on the initial seed. 

We devised a simple method to ensure de-
terministic behavior given a seed when restart-
ing. We allow each value to define a window 
value in which all timeouts that occur during 
the same window are guaranteed to force a 
timeout at the same time (the end of the win-
dow). We implemented this guarantee by add-
ing an additional constraint to the timeout 
check that the Label Counter must be a multi-
ple of the window value in order for a timeout 
to occur. 

As an example, the window value for our 
algorithms that use forward checking is 5,000. 
As we discussed in Section 3.5, the first run 
for our forward checking solvers is allowed to 
last for 0.75 seconds. After 0.75 seconds has 
elapsed, the solver will be forced to restart on 
the next iteration where the Label Counter is a 
multiple of 5,000. As long as our timer does 
not vary in its readings more than the amount 
of time the algorithm takes to perform 5,000 
label operations, our program will be com-
pletely deterministic given an initial seed 
value. We set the window value for all non-
forward checking algorithms to 30,000, and 
unfortunately did not have sufficient time to 
conduct experiments to find an optimal win-
dow value for each algorithm. 

5 Progressive results analysis 

5.1 Initial naïve implementation 
When we began the task of developing a CSP 
solver for crossword puzzles, we obviously 
had no experimental data from which to judge 
how much optimization would be required. 
We initially developed a generic CSP solver, 
for the following reasons: 
 to avoid premature optimization 
 to gauge the level of optimization and 

specialization required to handle the task 
 to have a program capable of handling a 

much more general class of CSP prob-
lems than just crosswords. 

Obviously, we were immediately confronted 
with the fundamental decision of how to rep-
resent the crossword problem in the CSP for-
malism. In particular, there is the key choice 
of what to consider as the variables: individual 
character slots, or whole words. As we saw in 
Section 1, there is clearly a trade-off between 
the small domain size of the characters (a few 
dozen possible values, as opposed to tens of 
thousands of potential words) and the simple 
binary constraints over word variables.  

Ideally we would have liked to develop 
both approaches in order to compare their per-
formance and decide conclusively which is 
more effective. However, we estimated that 
our time would be better spent by focusing on 
one approach, and going into greater depth. 
For the reasons explained in Section 1, we de-
cided to us a word-variable CSP representa-
tion of the problem. 

Our initial results quickly showed, how-
ever, that this generic approach was over-
whelmed by even simple 5*5 crosswords. It 
therefore became clear that a much more spe-
cialized approach would be required, taking 
into account the nature of the variables and 
constraints. In particular we hypothesized that 
tremendous gains in performance could be 
reaped by exploiting the very specific nature 
of the constraints (i.e. the fact that every con-
straint is simply the equality between the 
characters at two specified positions in two 
words). To validate this hypothesis, and hope-
fully improve our crossword results, we rede-
veloped our base CSP solving platform using 
the bit-set dictionary-tree look-up method de-
scribed in Section 3. 

5.2 A problem-specific approach 
We implemented this bit-set dictionary repre-
sentation based primarily on Ginsberg’s 1990 
paper. As we have already seen in part 3, it 
provides efficient data structures for restrict-
ing the current domain of a word-variable 
given a constraint of fixing one of its charac-
ters. We hypothesized that naively running the 
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standard CSP solving algorithms (and in par-
ticular iterating over the potential values of a 
variable to evaluate constraint) using these 
data structures would be very inefficient. Our 
results confirmed this: we were still unable to 
solve simple 5*5 crosswords. During this time 
we were primarily using a set of extremely 
simple crosswords (around 4*4) to evaluate 
our performance and debug. 

We therefore modified the basic CSP algo-
rithm to exploit the strength of the bit-set dic-
tionary data structure, by simultaneously prun-
ing all impossible values of a variable based 
on a constraint with a previously assigned al-
gorithm. This reduction of the usual iteration 
over potential values to a single operation 
dramatically improved performance, and al-
lowed us to finally tackle the simpler cross-
words. However, our algorithm was still un-
able to solve more complex crosswords in a 
reasonable amount of time. We therefore went 
on to implement several algorithmic exten-
sions. The implementation details of these ex-
tensions can be found in Section 3; here we 
shall examine the key results and our progres-
sive analytical process.  
 

5.3 Extensions 
5.3.1 Forward checking 
Based on the quantitative results in the CSP 
literature, we hypothesized that the most ef-
fective extension would be Forward Checking. 
However, this also proved to be relatively 
tricky to implement. In particular, the standard 
pseudo-code for FC had to be adapted to ap-
propriately use our bit-set dictionary system 
(see Section 3). In order to debug our imple-
mentation, we used a set of specially chosen 
crosswords designed to test specific compo-
nents of the algorithm (e.g. a crossword on 
which no unlabeling is ever required, an ex-
tremely constrained crossword with no black 
squares, etc.).  

Once implemented, the results are ex-
tremely positive, as evidenced by the compari-

son of the run-times on Puzzle 1 in this table 
(note that the CPU timer is inaccurate for run-
times below one second). 

 
 Averages 

 Label 
Counter 

Unlabel 
Counter 

CPU 
Time 
(sec-
onds) 

noAC- 
FC-

noDVO-
chronBT 

34 15 0.03 

noAC-
noFC-

noDVO-
chronBT 

8,084,841 4,049,466 19.54 

 
Forward checking reduces the time taken 

to treat Puzzle 1 by several orders of magni-
tude (note that we cannot compare for the 
other puzzles, as the base algorithm could not 
solve them before time-out). To understand 
why the effect is so strong, we evaluated cer-
tain meta-statistics: the number of calls to la-
bel and unlabel in particular. The origin of the 
speed-up is clear: the Forward Checking algo-
rithm completely avoids labeling most “dead-
end” variables, which would otherwise lead us 
down very large useless parts of the search 
tree. This effect is also true for harder prob-
lems, but is a lot less pronounced when DVO 
is activated. 

5.3.2 Dynamic Variable Ordering 
In parallel, we implemented Dynamic Vari-
able Ordering, which was extremely easy to 
add given the architecture of our system. We 
had hoped that this would provide a good per-
formance boost, and this immediately proved 
to be the case. Results for Puzzle 1 are below 
(with AC3 and CBJ on to avoid time-outs). 
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 Averages 

 Label 
Counter 

Unlabel 
Counter 

CPU 
Time 
(sec-
onds) 

noAC-
noFC-

noDVO-
chronBT 

8,084,841 4,049,466 19.54 

noAC-
noFC-
DVO-

chronBT 

133 71 0.00061 

AC3- 
FC-

noDVO-
CBJ 

33 15 0.033 

AC3- 
FC- 

DVO-CBJ 
37 16 0.0086 

 
With FC off, this DVO clearly has a tre-

mendous impact, decreasing run-time by 
around 4 orders of magnitude. This is due to 
the tremendous decrease in the number of 
calls to label and unlabel, thanks to the “intel-
ligent” ordering of variables assured by DVO. 
Indeed, in the absence of FC, our results show 
that DVO is the best of our three other exten-
sions to have (see tables in annex). 

In the presence of FC however, the results 
above for Puzzle 1 do not show a great im-
provement with DVO. The figures for harder 
problems tell a different story. Here are the re-
sults for Puzzle 4: 

  
 Averages 

 CPU Time 
(seconds) 

Real Time 
(seconds) 

AC3-FC-
noDVO-CBJ 21.31 23.97 

AC3-FC- 
DVO-CBJ 4.87 4.87 

 
Here DVO has a substantial impact 

(roughly one order of magnitude) on run-time, 
even in the presence of FC. We can conclude 
that DVO is extremely important for an algo-
rithm which must scale well with problem dif-
ficulty. It is also interesting to note that DVO 

is essentially “free” in terms of run-time when 
couple with FC, as the smallest-current-
domain variable heuristic is sufficient. 

Indeed, we evaluated multiple heuristics 
for choosing the next variable in DVO. In par-
ticular we attempted various degrees of “look-
ahead”, for example by evaluating the number 
of values which do not conflict with any cur-
rent assignment, rather than just considering 
the current domain size (of course, with For-
ward Checking there is no difference). This 
method turned out to be the most successful in 
our experiments, and was retained subse-
quently for all our results whenever FC was 
turned off. 

5.3.3 Arc consistency 
We next decided to implement a pre-
processing step, using arc-consistency. Indeed, 
the CSP literature shows that methods such as 
AC3 and AC5 can be very effective at simpli-
fying complex CSP’s. These methods also 
have the advantage from an engineering per-
spective of being decoupled from the rest of 
the algorithms, as they run once as a pre-
processing step, before the main solver. This 
greatly facilitates debugging and good system 
design. Our results on the base set of problems 
were not clear-cut, as evidenced by these fig-
ures: 

 
 Averages 

 Label 
Counter 

Unlabel 
Counter 

CPU 
Time 

(seconds) 
Puzzle 2 

noAC-FC-
DVO-CBJ 732 436 0.019 
AC3-FC-
DVO-CBJ 1472 864 0.074 

Puzzle 4 
noAC-FC-
DVO-CBJ 107,677 64,766 5.51 
AC3-FC-
DVO-CBJ 97,904 58,819 4.86 
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Analyzing the results showed that is actu-
ally bad for over-all run-time performance on 
the easier problems. However, on harder prob-
lems (i.e. puzzle 4 and harder) it has a notice-
able decreasing effect. We can once again ex-
plain this thanks to the label and unlabel 
counts: AC3 reduces them even in the pres-
ence of FC and DVO. This is clearly worth the 
time-cost of pre-processing in harder prob-
lems. 

We implemented AC3 here, and had been 
planning on implementing AC5 to make the 
algorithm more efficient. However, profiling 
our system’s runtime performance revealed 
that the arc-consistency pre-processing step is 
extremely fast relative to over-all runtime on 
hard problems. AC5 would therefore have 
provided a negligible performance boost, and 
we thus decided not to pursue it. 

5.3.4 Backjumping 
The final algorithmic extension was to imple-
ment a form of back-tracking. We imple-
mented conflict-directed backjumping (CBJ), 
but our performance results did not indicate a 
great performance boost (especially with FC 
or DBO running), as evidenced by the run-
time results here for Puzzle 1:  

 
 Averages 

 Jump 
Count 

Label 
Counter 

Unlabel 
Counter 

CPU 
Time 
(sec) 

AC3-
FC-

DVO-
chronBT 

0 37 16 0.0088 

AC3-
FC-

DVO-
CBJ 

0 37 16 0.0088 

 
It is clear that while CBJ has some impact 

in the absence of FC and DVO, it has no im-
pact whatsoever with them on. We hypothe-
sized that this was because we were rarely 
“backjumping” back several levels (which is 
the case in which CBJ has an advantage over 

basic chronological backtracking). To evaluate 
this hypothesis, we put in place “jump” count-
ers in our code. These show that the number 
of jumps is always relatively low, and that 
with Forward-Checking on we basically never 
backjump multiple levels (see table above and 
the Annex).  

There are however some notable cases 
(mainly with DVO on but FC off) in which 
CBJ still has a strong run-time impact, despite 
the small number of backjumps. This is the 
case in the following results on Puzzle 4 for 
example: 

 
 Averages 

 Jump 
Counter 

Label 
Counter 

Unlabel 
Counter 

CPU 
Time 
(sec) 

noAC-
noFC-
DVO-
CBJ 

3,310 49,539 27,820 1.21 

noAC-
noFC-
DVO-

chronBT 

0 1,636,240 1,026,021 30.14 

 
Here CBJ decreases run-time by more than 

one order of magnitude; the label and unlabel 
counters show that this is due to a huge de-
crease in the number of these function calls. 
Yet CBJ only jumped over 3310 levels (tiny 
compared to the number of saved labels)! We 
hypothesize that this is because some of the 
variables skipped by these jumps would have 
led to large search tree explorations, but were 
unable to corroborate this hypothesis. Had we 
had more time, we would have implemented 
Dynamic Backtracking to see if it has more of 
a performance impact than CBJ. 

5.4 Algorithm variance analysis 
Until this point we had been primarily consid-
ering aggregate average results in order to get 
the “big picture”, to understand the general ef-
fectiveness of our algorithms. However, aver-
ages do not capture the variations in the re-
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sults and performance of a given algorithm on 
a given problem. 

To evaluate this, we considered the stan-
dard deviation of the CPU run-time of a given 
algorithm on a given problem for a set of 15 

different random seeds. To account for the 
fact that the different algorithms have very 
different expected run-times, we normalized 
the standard deviation relative to the expected 
value, obtaining the following results.

 

Puzzle 1: Log of Standard Deviation of CPU Times (seconds) 
Normalized by Expectation
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These results reveal that the four algo-
rithmic extensions we implemented have very 
different effects on the variance of the per-
formance results: 

 

 DVO greatly decreases the normalized 
standard deviation (by roughly an order of 
magnitude). A likely explanation for this 
behavior is that without DVO a “bad” 
choice of random seed can lead to a very 
inefficient ordering of variables (with ex-
tremely large current-domain variables 
first for example), whereas a “lucky” ran-
dom seed can make the same problem 
very easy; DVO levels the field in this re-
spect, as it enforces a good ordering of 
variables. One interesting anomaly is that 
the solver with DVO on and everything 

else off has higher normalized standard 
deviation than any other solver.  

 AC3 also has a very strong decreasing ef-
fect on variance. This is probably due to 
the fact that arc-consistency prunes out 
some obviously bad variable values, 
which may otherwise have slowed down 
the algorithm for “unlucky” random 
seeds. 

 FC has a slightly decreasing effect, but 
primarily in the absence of DVO. The ex-
planation is similar to that of DVO. 

 CBJ has little effect either way; this is no 
doubt because of the general lack of ef-
fectiveness of this extension. 
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These variations in variance are theoretically 
interesting, but can also have practical impor-
tance. Indeed, in a time-critical environment, 
it is desirable to have algorithms with minimal 
run-time variance (even at the expense of 
some expected run-time), to be able to more 
accurately plan time usage and avoid risking 
running out of time. 

5.5 Final results  
5.5.1 Raw run-time performance 
To take a step back and see the full picture of 
our algorithm’s performance, we ran the full 
stable of algorithms on the set of four prob-
lems, averaging over 15 different seeds. In 
particular, we performed an ablation study by 
trying removing each of the algorithm exten-
sions individually. The CPU time results are 
below.

 

CPU Time Averages
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These results appear to be largely ho-

mogenous. We suspect that this is due to our 
restart optimization method. While by and 
large our restart optimization method im-
proved performance, we believe that it elimi-
nated many of the large distinctions between 
the solvers and made many of our results 
fairly random. 

6 Future work 
The results analysis we carried out throughout 
our experimental phases revealed several de-

velopment and research paths to explore. In 
particular we would like to extend the use of 
heuristics from variable choosing (as in DVO) 
to other parts of the CSP solver, notably the 
choice of the next value to explore. There are 
obvious heuristics for this (such as the least 
constraining value heuristic), but one could 
also imagine more complex approaches, with 
a certain degree of look-ahead and pre-
processing for instance. 

It would also be interesting to further ex-
plore backtracking/backjumping techniques. 
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Indeed, we had only limited success with 
these approaches, and it would be instructive 
to try to improve on this. In particular we 
would evaluate Dynamic Backtracking rela-
tive to our current algorithms. 

Additionally, an area which could be of 
great practical importance is studying how to 
do intelligent restarts and time-outs of our al-
gorithms. Indeed, performance can vary quite 
widely depending on random factors (summa-
rized in our code by the random seeds), and 
thus intelligent restarting strategies could 
prove to be just as useful for CSP solving as in 
hill-climbing SAT solvers, for example. Our 
success with restarts that reshuffled the order 
of each domain also suggests that developing 
a preprocessing step that orders each domain 
in a "good way" could be useful. 

Finally, although all the problems we con-
sidered here were crosswords, we did not de-
velop any domain-specific heuristics or strate-
gies based on the nature of the puzzles (be-
yond our bit-set dictionary domain representa-
tion). There could potentially be huge per-
formance advantages to be had by taking into 
account the very specialized nature of cross-
word problems. 
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