(CS227: Reasoning Methods in Al
Assignment 2 Feedback for:

Harry Robertson Todd Sullivan Pavani Vantimitta

May 14, 2008

I Overview

Project 2 was designed to give everyone hands-on experience with solving classical con-
straint satisfaction problems. Every group implemented algorithms which allowed them to
successfully fill in crossword puzzles, and some cven solved the infamous Zebra problem.
Overall, we were pleased to see improvements in discussion, engincering, organization, and
presentation over the last report. Well done.

Section II provides general feedback and observations for all assignments. Section II1
provides specific feedback for your group. Additional feedback has also been left on a hard-
copy of your group’s report.

II General Feedback and Observations

1 Report Organization and Presentation
1.1 Good Overall Style

Most groups capitalized on the adviee we offered in response to the previous assignment.
We encourage you to continue to take advantage of that feedback and maximize how cffec-
tively yon communicate your hard work and interesting results.

1.2 Code / README Line Length

Please do us a favor and keep the majority of lines to no more than 80 characters long. If
you have the odd line which goes over 80, then that is fine, but in general long lines make
a file painful to read. This is especially true in the README files - our terminal is only so
wide!

(CS227 Assignment 2 Feedback 2af9

2 Ideas to Ponder
2.1 Random Restarts

Groups which analyzed variance realized that the distribution of run times was heavily-
tailed. In other words, a bad start could severely diminish the performance of an algorithm.
Furthermore, these outliers occurred with some measurable frequency. To counteract this
problem, two groups implemented random restarts as way of mitigating the damage done by
a poor initial starting position. These graups achieved relatively high performance and their
outliers were less extreme. As described in Section 3, the two best performing and most
consistent tcams utilized this strategy.

2.2 Puzzle Solution Differentiation

Groups presented a variety of ways for obtaining different solutions to a given puzzle.
This ranged from backtracking from a good solution and using a tabu list to restarting from
the beginning with a new random seed. We observed that most groups used the dictionary
in lexicographic order. One simple approach to achieve very different and more interesting
solutions could have involved sorting the dictionary in some new, arhitrary order.

One group added an option to have the solver never reuse any word in a given solution to a
puzzle. They went even further and measured its impact on performance (almost negligible
as it turns out). This was a neat idea and definitely resulted in more interesting solutions
to the puzzles.

2.3 Dictionary Perturbations

It would have been interesting to see how the algorithms were affected by perturbations
to the dictionary. For example, in what circumstances would a smaller or larger dictionary
be more helpful?

3 Performance

This section gives an overview of how each team performed when using their best-performing
algorithm. There were a wide range of results with many orders of magnitude separating
the most and least efficient solutions. The best solutions solved all crosswords puzzles in
consistently less than a second and never exceeded the timeout threshold.

3.1 Method

e Overview. We collected our own data using yvour “best-performing” solvers on each of
the four provided puzzles. 100 trials were run with each team'’s solver on each puzzle.
The projects were compiled as direeted by cach group’s README, Expceriments were
run on the pod cluster.

e Algorithm Selection. The “best-performing” algorithm was the combination of fea-
tures (forward checking, etc.) which resulted in the fastest reported median run times

S227 Assignment 2 Feedback 30f9

and the fewest timeouts. Furthermore, the algorithm was chosen on a per-problem
basis. In other words, if you had onc combination run best on puzzle 1 and a different
one run best on puzzle 2, then the appropriate comhination was nsed for each puzzle.

e Fairness. Teams and puzzles were run in a round-robin fashion to maximize fairness.
In particular, it improved chances that over 100 trials every team would see a similarly
loaded machine (throughout the collection of the results, an otherwise idle machine
was used). Furthermore, rotating puzzles and teams made sure the cache was cold at
the beginning of any trial.

e One Trial at a Time. When necessary, the submitted code was modified to only run
a single trial on a single puzzle at a time. This ensured that no team’s run time would
be overestimated due to the solving of multiple puzzles instead of the one intended
puzzle per trial.

e Randomness. We appreciate that some groups took our advice and added a mecha-
nism for achicving a deterministic result. Howcever, for the purpeses of us measuring
performance from scratch, we needed to ensure any randomness your algorithm utilized
was not set from a specific, pre-determined seed. When necessary, the submitted code
was maodified to use a random time-based seed instead of a pre-determined, hard-coded
value,

e Measurements. Run times were measured with the UNIX time utility. The run
time for a given trial was computed as the sum of the CPU. time spent in bath user
and kernel space. This further minimized the impact of any other activity on the
machine.

e Timeouts. A timeout of ten minutes was enforced. Any program which had a different
timeout was modified to use a ten minute timeout. The median and maximum run
time values presented below do not include trials which timed out. However, all other
values do include timeouts as a flat ten minute run time. This underestimates actual
run time of programs which timed out, but provides a reasonable basis for comparison
here. Finally, any trial which ended without finding a solution or tried to run for longer
than the timeout was also assigned the standard ten minute timeout as their run time.

3.2 Results

These results have been anonymized by using team numbers instead of team member
names. The team numbers were chosen in order of performance, e.g. the hest performing
team is referred to as Team 1. Though these often correlate with grades, this is not necessarily
the case as grades are determined primarily by your analysis, not performance. These results
exclude one team whose solver could not complete the required puzzles.

Specific feedback regarding your team’s performance is located in Section III. That section
also identifies which team number represented your team here.

(CS227 Assignment 2 Feedback 40f9

Figures 1 and 2 compare the median and mean performance achieved by each team on
cach of the four puzzles with their best-performing algorithm. Table 1 contains the dcetails
about each teams’ performance on all of the metrics we evaluated. In particular, it presents
median, mean, best, and worse performance, sample standard deviation between trials (s),
and the number of timeouts which occurred (or program crashes).

Median Puzzle Solve Times by Team

400

Best: Telam 1 -—-@--- H——""7" T
100
o
0]
o
S
GEJ 10 I
i':
(e=
=]
o ol
(@)}
o
/ @ -
0.04 gl ie i ® : :
1 2 3 4
Puzzle #

Figure 1: The log-scale run time axis shows the considerable difference between the different
algorithms.

Interestingly, performance was distributed over a very wide range. The best performing
teams typically solved even the hardest puzzles in under a secand. They benefited greatly
from the random restarts mentioned in Section 2.1. The difference between the most and
least efficient solutions was approximately three orders of magnitude.

The sample standard deviation (s) correlated very nicely with performance. The teams
which had the least variance also performed the best. Figure 3 provides a visualization of
the amount of time it took to run each trial per team per puzzle.

CS227 Assignment 2 Feedback 50f9

Mean Puzzle Solve Times by Team

400 | by Te
Best: Team 1 : <
100
)
(O]
2]
S’ 10 L
£
i_.__
(<=
=
a'ed s
(@))]
o
01 -
i § l i l I 1
1 2 - :

Puzzle #

Figure 2: By plotting mean run times, we see that the most consistent algorithms benefit
the most since the distribution of run times was gencrally heavily-tailed towards longer run
times with little or no tail towards shorter run times.

Team #

Team #

(0S227 Assignment 2 Feedback 6of 9
g; E 3t i 1
® e B i
§ bt ' L e
= 8 I Best N

600

BUU=11meout

@
T

i i i

1 10 100 800
loa Run Time (sec)

(¢) Puzzle 3

i
100 800

BUU= 1imeout

@Bﬁ o oo

o C@on &

aﬂr; 'ﬁﬁ E%j?é

m.o
o
m P
T ———

&

10
loa Run Time (sec)

(d) Puzzle 4

100 600

Figure 3: Distribution of run times achieved by each team’s best-performing algorithms.
Each point represents a single trial. The x-axis indicates the run time, while the y-axis
indicates the team which the result belongs to. The y-axis value is staggered around y = 1
for team 1, and so on. The staggered y-axis value is simply to improve readability for a given
team’s trial. We see that results are tightly clustered for the easier puzzles - there was not
much difference from one run to the next. The deviation between runs on the fourth puzzle
is particularly striking. The very long tails of the distribution show up occasionally even for
the best implementations. Finally, team 3’s results seem to be particularly well-clustered.
This may bc a fluke with how much randomness they inserted into their algorithm, but
there certainly was some randomness as they solved the puzzle in a number of different ways
(though they had many more repetitions than other groups, as most teams had no or few

repetitious solutions).

(CS227 Assignment 2 Feedback 7of9
Performance by Team
e i # Run Time (sec) # #
Trials | Median | Mean S Min Maz | TO | Crash

1 100 .04 .03 0 .03 .05 0 0

1 2 100 .05 .06 | 0 .04 .35 0 0
3 100 14 15 0 12 .36 0 0

4 100]] 21 il 60.42 0 0

1 100 .24 .24 0 .22 32 0 0

2 100 .68 1107 1.75 .59 13.51 0 0

e 3 100 .54 .68 A4 .29 3.90 0 0
4 100 .69 3.08 76 .20 60.56 0 0

1 100 342 3.13 3.04 3.57 0 0

P 2 100 13.97 14.01 .33 13:72 16.51 0 0
3 100 26484 26124 BB 25 695552944 0 0

4 100 11.78 11.80 220 1148 13.45 0 0

1 100 37 6.37 | 59.66 .29 .60 0 1

2 100 .46 12.90 | 83.93 35 33.52 0 %

. 3 100 1.07 61.12 | 179.62 .58 5.35 0 10
4 100 1.33 7337 [ASTE .45 | 196.43 3 8

1 100 1.32 1.32 0 1.08 151 0 0

5 2 100 1.86 7.56 17.01 1.25 60.68 0 0
E 3 100 5.03 18.19 65.84 1.73 | 481.61 0 0
4 100 42.29 | 244.92 | 266.47 2.09 | 544.12 | 28 0

i 100 S L 14 0 07 87 0 0

6 2 100 49.19 62.61 46.19 46.81 | 413.08 0 0
3 100 76.73 80.83 20.65 73.773 | 271.35 0 0

4 100 86.83 | 277.01 | 278.30 1.14 | 592.61 37 0

1 100 .32 .34 0 .29 .86 0 0

7. 2 100 11.40 22.98 38.83 6.51 | 274.11 0 0
3 100 272.05 | 312.85 | 110.41 | 156.34 | 586.83 1 0

4 100 397.40 | 378.80 | 171.31 | 108.99 | 593.70 | 15 0

1 700 32 1.65 8.52 .03 357 O 1l

AVG % 700 1.98 17.33 26.86 .04 413.08 0 2
3 700 6.06 71.43 53.90 12 | 586.83 1 10

4 700 11.68 | 141.65 | 131.53 A 593 70N RS 8

Table 1: Complete results for each team with their best-performing algorithms on each

puzzle.

0S227 Assignment 2 Feedback 8 of 9

IIT Feedback for the Robertson-Sullivan-Vantimitta Group

1 The Good

Good Analysis. Your team provided an excellent analysis of the results. We were
interested by your analysis of domain representation trade-offs as well.

Standard Deviation Measurements. We were glad to see that you carefully looked
at standard deviations in addition to the averages. Perhaps knowledge of the high
variability led you to implement random restarts.

Random Restarts. Random restarts was an great idea given the variance of the
run times most teams encountered. The inclusion of this feature no doubt made your
implementation one of the best.

Excellent Engineering and Performance. Your performance on all of the puzzles
was outstanding. Your careful analysis of the memory component was a welcome
addition to the report, especially since yvou provided the empirical data needed to
back up yvour claims. Your optimization of the arc consistency feature was impressive,
though as you noted it is only a significant factor in the smaller puzzles that we tested.
Of course, your run times are fast enough that maybe it is on the critical path even
for the tougher puzzles you solved.

2 Areas for Improvement

Analysis of Solver w/o FC. Forward checking was expected to provide a perfor-
mance boost, so it is surprising that your performance on puzzles 3 and 4 actually
declines when it is enabled. It would have been interesting to have seen an explanation
for this phenomenon.

e Results Presentation. It would have been interesting to have seen the median result

plotted as well. Furthermore, it was a bit difficult to pick out the the best solver for
each puzzle from your graph. It would have been helpful to have denoted the winners
and labeled them with their run times. It may have also been helpful to have labeled
the others, though perhaps this would have created too much clutter.

3 Your Performance

In Section 3, yon were Team 1. The data we collected for with your team’s program is
replicated below. Your implementation really made an impression on us and blew away vour
competition. The fact that you paired this excellent work with a good analysis ensured your
success on this project. Great job!

4 Late Days

Please see Table 2 for information about the number of late days you have used and
remaining.

CS227 Assignment 2 Feedback 90of 9

Team 1’s (Your Team’s) Performance
Dyl # of || Run Time (sec) # of # of
WS\ Trials | Median | Mean s | Min | Maz | Timeouts | Crashes
1 100 .04 .03 e e .05 0 0
2 100 .05 .06 0| .04 .35 0 0
3 100 14 15 () [S .36 0 0
4 100 .19 2115 (=05 11 | 60.42 0 0
Assignment Number of Late Days
Boolcan Satisfiability 0
Constraint Satisfaction 2
| Remaining 1 5 |
Table 2: Late Day Statistics.
5 Grade

Your letter grade on this assignment: A+

	Scan0001.tif
	Scan0002.tif
	Scan0003.tif
	Scan0004.tif
	Scan0005.tif
	Scan0006.tif
	Scan0007.tif
	Scan0008.tif
	Scan0009.tif

