
 1

CS227: Assignment 2

The second assignment involves implementing and evaluating constraint satisfaction
algorithms, and writing up a report on your experiments.

Algorithms: Implement an algorithm that includes the following features. The algorithm must
start by using arc consistency to preprocess the constraints. You may use AC-3, though other arc
consistency algorithms are also permissible. The algorithm must include forward checking and
dynamic variable ordering using the minimum remaining values heuristic. The algorithm must
backtrack using either conflict-directed backjumping or dynamic backtracking.

Evaluate the benefits of each of the above features by comparing the version with all features
enabled against variants without arc consistency, without forward checking, without dynamic
variable ordering, and without either conflict-directed backjumping or dynamic backtracking.
You must get variety in your solutions by randomizing the choice of equally good next variables
and the order in which you try values for a given variable.

Problems for evaluation: The main problems for evaluation will be the problem of filling out a
crossword puzzle. The four test puzzles are included with this handout (electronic version
available on Coursework site). Use the dictionary posted on the Coursework site, with a little
over 20,000 words. It is a slightly modified version of the standard dictionary available on Unix
systems. Additional information on constructing crossword puzzles can be found in the paper:

M. Ginsberg, et al, 1990. Search lessons learned from crossword puzzles. In Proc. of AAAI-90.

You may also want to run the Zebra problem to help you debug your code. Prosser's version has
11 solutions, while Dechter's version has only 1 (see footnote 15 in [Prosser 1993]). Doing this
will also have the side benefit of making your core constraint satisfaction code completely
domain independent.

Report: Your report should contain descriptions of the algorithms you are evaluating, including
discussions of any optimizations you may have used to make the algorithms run fast. The report
should contain the results of running the experiments and a discussion of your conclusions. Your
results should be based on averages generated from at least 10 distinct runs for each problem.
Additionally, the report should show at least 5 distinct solutions for each problem. Submit all
source code electronically. Assignments will be graded on the description of the algorithms and
optimizations used, the raw results, and the analysis of your results.

Submission: The report can be submitted electronically, in class, or directly to the TA. Submit
source code electronically as a single .tgz or .zip file that unpacks into its own directory. Please
include a small README file describing how to build and run your code. Clearly identify all
members of the group both on the report, and in the electronic submission. Send electronic
submissions to cs227-submit@lists.stanford.edu.

Assignments may be done in groups of 2-3 students. You may choose any programming
language for implementation purposes, though we recommend either C or C++.

Assignments are due by noon on 2 May.

