CS227: Assignment 2

The second assignment involves implementing andluatiag constraint satisfaction
algorithms, and writing up a report on your experiments.

Algorithms: Implement an algorithm that includes the followiiegitures. The algorithm must
start by using arc consistency to preprocess thstaints. You may us&C-3, though other arc
consistency algorithms are also permissible. Tgerdhm must includdorward checking and
dynamic variable ordering using theminimum remaining values heuristic. The algorithm must
backtrack using eithaonflict-directed backjumping or dynamic backtracking.

Evaluate the benefits of each of the above featbyesomparing the version with all features
enabled against variants without arc consistenathowt forward checking, without dynamic
variable ordering, and without either conflict-adited backjumping or dynamic backtracking.
You must get variety in your solutions by randomgzthe choice of equally good next variables
and the order in which you try values for a givemniable.

Problems for evaluation: The main problems for evaluation will be the peshloffilling out a
crossword puzze. The four test puzzles are included with this dwar (electronic version
available on Coursework site). Use the dictionaogted on the Coursework site, with a little
over 20,000 words. It is a slightly modified versiof the standard dictionary available on Unix
systems. Additional information on constructingssword puzzles can be found in the paper:

M. Ginsberget al, 1990. Search lessons learned from crosswordgsizinProc. of AAAI-90.

You may also want to run the Zebra problem to lyelp debug your code. Prosser's version has
11 solutions, while Dechter's version has onlyee (fotnote 15 in [Prosser 1993]). Doing this
will also have the side benefit of making your camnstraint satisfaction code completely
domain independent.

Report: Your report should contain descriptions of theoalpms you are evaluating, including
discussions of any optimizations you may have usadake the algorithms run fast. The report
should contain the results of running the expertsiand a discussion of your conclusions. Your
results should be based on averages generatedafrégast 10 distinct runs for each problem.
Additionally, the report should show at least Stidist solutions for each problem. Submit all
source code electronically. Assignments will badgd on the description of the algorithms and
optimizations used, the raw results, and the arsabfsyour results.

Submission: The report can be submitted electronically, irssjeor directly to the TA. Submit
source code electronically as a single .tgz or figpthat unpacks into its own directory. Please
include a small README file describing how to budéahd run your code. Clearly identify all
members of the group both on the report, and inelleetronic submission. Send electronic
submissions t@s227-submit@lists.stanford.edu

Assignments may be done in groups of 2-3 studerf®u may choose any programming
language for implementation purposes, though wematend either C or C++.

Assignments are due by noon®M ay.



(b)

Figure 2: Test puzzles

and one of the two words in Figure 1 would be with-
drawn immediately.

In practice, this does not work so well. The reason is
that the computation involved is a fairly difficult one —
we need to look at the possible choices for w;, check
to see which letters are still possible in which spaces
(this is the expensive part, since it involves examining
each of the choices for w;), and then to use this in-
formation to prune the set of possibilities for wy. The
analysis is expensive enough that the cost incurred is
not in general recovered by the associated pruning of
the search space. More conventionally put, the for-
ward branching factor for the problem is high enough
that additional levels of lookahead draw conclusions no
more effectively than their backward counterparts.

3 Experimental results

Frames used and raw data

In order to evaluate the usefulness of the ideas in the
last section, the four puzzles appearing in Figures 2
and 3 were solved by the program. The program al-
ways used one level of lookahead (i.e., arc-consistency)

e

(d)

Figure 3: Test puzzles (ctd.)



