
[1]

CS 224n Programming Assignment 3:

Maximum Entropy Markov Models & Treebank Parsing

Todd Sullivan
todd.sullivan@cs.stanford.edu

Pavani Vantimitta
pavani@stanford.edu

1 Introduction
For PA3 we implemented a Maximum En-
tropy Classifier, which we used for a Maxi-
mum Entropy Markov Model. We developed
many features for the model, of which se-
quence features such as previous word and
next word has the most positive effects. Our
best feature set achieves an accuracy score of
90.57 and overall FB1 of 67.38 on the genia
data set. Our parser achieves its best F score
of 84.28 on the genia data set by using third
order vertical markovization. Due to our op-
timizations described in Section 3.1, our
parser is able to parse 20-word sentences in
125 milliseconds and 69-word sentences in 4.8
seconds on average when running on a single
core of an Intel Pentium Core 2 Duo T7500 @
2.2 GHz.

2 Maximum Entropy Markov
Models

In this section we discuss the implementation
details related to fast training and selecting the
optimal feature set from the features that we
created. We end the section with a perform-
ance analysis of the positive and negative as-
pects of our best feature set.

2.1 Training Implementation
The training routine for Maximum Entropy
models is fairly straightforward and easy to
implement. With that said, there are several
key design decisions that can have a large im-
pact on performance. In this section we briefly
discuss the key modifications to the base algo-
rithm that gave us significant reductions in
computation time.

The first task in implementing the Maxi-
mum Entropy Classifier was to implement the
getLogProbabilities function. This function is
used by many parts of the classifier and is im-
portant to implement efficiently. Thankfully,
there was only one obvious way of imple-
menting the function, which we will not
bother to describe. We tried using the pro-
vided SloppyMath class to perform calcula-
tions quickly, but the class' use actually re-
sulted in incorrect output.

The primary function where optimization
can make a difference is the calculate func-
tion, which takes a weight vector as input and
computes the objective function and its de-
rivatives. The most naïve way to implement
this function is to compute the objective and
derivatives in two separate loops, applying the
regularization at the end. This is the most
straightforward way to implement the method
because it is exactly how the process is de-
scribed in mathematical terms.

Assuming one implements the function in
this way optimally, one would include the ob-
jective and derivative penalties in a single for
loop and assign variables as far outside of for
loops as possible. For example, the objective

penalty is 
i

i
2

2

2


, so one would perform the

computation 22 once within the function
and then use the value as needed. The first ob-
vious optimization to notice here is that the
value that we divide by in the object and de-
rivative penalties, which are 22 and 2 re-
spectively, do not change between calls to the
function. Since the calculate function is called
many times, computing these values in the
class' constructor results in the training being
1.08 times faster.

[2]

The second important optimization is to
simply compute the objective and derivatives
in one for loop. This halves the number of
calls to getLogProbability, making the func-
tion 1.23 times faster than the base, naïve im-
plementation.

The third important optimization is to no-
tice that for each item in the training set, only
one value from getLogProbabilities is used in
its log form – the one that is included in the
objective calculation. Yet all of the values re-
turned by getLogProbabilities are needed in
their straight probability form for the deriva-
tive calculations. Thus for our final optimiza-
tion we created a copy of the getLogProbabili-
ties function called getProbabilities, that did
not compute the log of each probability before
returning the array. We then take the log of
the single value that is included in the objec-
tive calculation and do not have to use the
Math.exp function to convert all of the log
probabilities for use in the derivative calcula-
tions. Including this final optimization re-
sulted in an implementation that was 1.75
times faster than the base, naïve implementa-
tion.

2.2 Features
In this section we describe the features that we
developed, our hill-climbing method for find-
ing the best feature set, and the importance of
each feature in our final feature set.

2.2.1 Feature Descriptions
We developed many features for the task of
named entity recognition of DNA, RNA, cell
line, cell type, and protein names. Our features
can be characterized into several groups: base
features, number-related, alphabetical fea-
tures, non-alphanumeric-related, Greek char-
acters, sequence features, positional features,
and other features. We created each feature by
examining the words in the test set that are of
each entity category and finding similarities
between the words. The following tables de-
scribe each feature.

Base Features
WORD

The current word.
PREV_LABEL

The label assigned to the previous word in the sentence.

Number-Related Features
HAS_NUMBER

The current word contains at least one number.
NUM_ON_END

The end of the word contains a number.
CHAR_NUMBER_COUNT

The amount of characters that are numbers.
CONTINUOUS_NUMBER_COUNT

The amount of numbers in the word where contiguous
spans of characters that are numbers are counted as a

single number.
ALL_NUMS

All characters are numbers.

Alphabetical Features
LOWERCASE

All alphabetical characters are lowercase.
UPPERCASE

All alphabetical characters are uppercase.
FIRST_CHAR_CAP

The first character is an uppercase letter.
HAS_CAP

The word contains an uppercase letter.
CHAR_CAP_COUNT

The amount of uppercase letters.
CONTINUOUS_CAP_COUNT

The amount of uppercase letters in the word where con-
tiguous spans of uppercase letters are counted as a sin-

gle uppercase letter.
A_COUNT

The frequency of the vowel 'A'.
E_COUNT

The frequency of the vowel 'E'.
I_COUNT

The frequency of the vowel 'I'.
O_COUNT

The frequency of the vowel 'O'.
U_COUNT

The frequency of the vowel 'U'.
Y_COUNT

The frequency of the vowel 'Y'.
VOWEL_COUNT

The amount of vowels in the word.
CONSONANT_COUNT

The amount of consonants in the word.
CONSONANT_VOWEL_RATIO

The ratio of consonants to vowels, truncated to one
decimal place. The ratio is set to -1 * consonant count

when the vowel count is zero.

[3]

MORE_VOWELS_THAN_CONS
The vowel count is greater than the consonant count.

ALL_ALPHANUMERIC
All characters are alphanumeric.

Non-Alphanumeric-Related Features

DASH
The word contains a dash ('-').

DASH_COUNT
The amount of dashes ('-') the word contains.

COMMA
The word contains a comma.

HAS_NONALPHANUMERIC
The word contains at least one non-alphanumeric char-

acter.
ONE_NONALPHANUMERIC

The word contains only one
non-alphanumeric character.

Greek Character Features

GREEK_CHAR_CONTAINS
The word contains at least one
spelled-out Greek character.

GREEK_CHAR_INDIV_CONTAINS
One feature for each Greek character. The amount of

occurrences of that Greek character in the word.
GREEK_CHAR_COUNT

The amount of Greek characters in the word.

Sequence Features
PREV_WORD

The previous word in the sentence (if it exists).
PREV_PREV_WORD

The word at (position-2) in the sentence (if it exists).
PREV_PREV_PREV_WORD

The word at (position-3) in the sentence (if it exists).
PREV_PREV_PREV_PREV_WORD

The word at (position-4) in the sentence (if it exists).
NEXT_WORD

The next word in the sentence (if it exists).
NEXT_NEXT_WORD

The word at (position+2) in the sentence (if it exists).
NEXT_NEXT_NEXT_WORD

The word at (position+3) in the sentence (if it exists).
NEXT_NEXT_NEXT_NEXT_WORD

The word at (position+4) in the sentence (if it exists).
PREV_WORD_SHORT

The previous word is less than four characters long.
PREV_WORD_LONG

The previous word is greater than ten characters long.
FIRST_WORD

The word is the first word in the sentence.
WORD_POSITION

The raw position of the word in the sentence.

WORD_POSITION_NORM
The position of the word normalized by the length of

the sentence, truncated to one decimal place.

Other Features
LENGTH

The amount of characters in the word.
SHORT_LENGTH

The word is a length smaller than four.

2.2.2 Feature Selection
We began our feature development process by
creating features one at a time and executing
the program with various feature combinations
to see if each new feature improved perform-
ance. Aside from the fact that the possible
number of combinations quickly spirals out of
control, we ran into other problems. While
testing with our first five or six features, we
found that many features performed horribly
alone or in certain combinations with other
features. The amount of combinations that re-
sulted in dismal results would have quickly
led us to believe that many of our features
were worthless, but we found that for most
features a few special combinations with other
features existed that actually improved per-
formance over the baseline, which was using
only the WORD and PREV_LABEL features.

We soon realized that manually picking
feature sets and evaluating each one in turn
would not work. To solve this problem, we
developed a feature selector that attempts to
find the optimal feature set through hill climb-
ing with random walks. This hill climbing
strategy is primarily controlled by the setFea-
tures function within the Maximum Entropy
Classifier.

2.2.2.1 Hill Climbing with Random Walks
The basic premise of our feature selector is
that we start with our current best known fea-
ture set, continually make changes to the best
feature set creating a new feature set, apply
the new feature set to the data generating a
score, and replace the best feature set with the
new feature set if the score increases. In the
beginning, our best known feature set is the

[4]

base features WORD and PREV_LABEL.
These features are permanent features that we
include in all potential feature sets.

All other features are considered "possible
features." During each iteration, with a 15%
chance we try a completely random feature set
where each possible feature has a 50% chance
of being included in the set. The other 85% of
the time we create a new feature set based on
the current best feature set such that each pos-
sible feature is flipped on or off with a prob-
ability of 0.5 / (number of possible features).
Features are flipped on with the given prob-
ability if they are not included in the current
best feature set, and features are flipped off
with the given probability if they are members
of the current best feature set.

We keep track of all of the feature sets that
our feature selector has attempted so that we
do not waste time attempting the same feature
set twice. For each feature set attempted, our
feature selector writes the output results to a
file, executes the nerEval script for computing
per entity F scores given the previously writ-
ten file, and records the scores for the feature
set in a CSV file.

2.2.2.2 Feature Selector Objective Func-
tion

We tried optimizing several different scores
while hill climbing. Our first objective func-
tion that we tried to maximize was the overall
F score. While this certainly worked in select-
ing features that improved performance over-
all, it had disappointing side effects for some
of the entity categories.

The amount of protein entities in the cor-
pus vastly outweighs the amount of other enti-
ties, such as RNA entities. Specifically, the
hand-labeled test set contains only 313 RNA
entities while it contains 7,598 protein entities.
With our initial objective function (overall F
score), our feature selector was able to maxi-
mize the objective by choosing feature sets
that had a large positive impact on the protein
category but had a large negative impact on

the RNA category. When not including the
sequence features, which we created after our
initial hill climbing run, optimizing the overall
F score resulted in our "best feature sets" not
labeling any words as RNA entities.

While optimizing the overall F score led to
improvements across the frequently occurring
entity categories, it resulted in poorer per-
formance across the less frequent entity cate-
gories such as RNA entities. To fix this prob-
lem we changed our objective function to be
the sum of each entity category's F score. This
change to the objective function was effective
and caused our feature selector to select fea-
ture sets that generally improved performance
in all categories. While our new objective
function does not necessarily result in an op-
timized overall F score, we feel that it is more
important to do reasonably well on all catego-
ries rather than have high performance on a
few categories and low performance on others.

2.2.2.3 Best Feature Set
Over the course of one night our feature selec-
tor attempted 1,421 different feature sets. Ta-
ble 2.2.2.3 details our highest scoring feature
set given the sum of category F scores objec-
tive function.

Our most important features (aside from
the base features) were the PREV_WORD and
NEXT_WORD features. While creating fea-
tures, we quickly found the previous and next
words to be valuable and we continually
manually added additional features such as the
"previous previous word" and "next next
word" features to the possible feature set until
we saw no increase in the objective function.
As shown in the table, our feature selector
found the four words after the current word to
be useful while only the three words before
the current word were useful.

Out of our five number features, the fea-
ture selector only found NUM_ON_END to
be useful. Of the non-alphanumeric features,
only DASH and COMMA were important.
The only alphabetical feature that was helpful

[5]

was the distinction between capitalized and
uncapitalized words. While the features for
containing spelled-out Greek characters and
how many of each Greek character were use-
ful, the overall count of how many Greek
characters were in the word did not help. None
of the length features or word position features
were helpful.

Our feature selector also found two other
feature sets that had identical scores to our
best feature set in all categories. One of these
additional feature sets contained all of the fea-
tures from our best feature set, but also con-
tained the feature
ONE_NONALPHANUMERIC that had no
positive or negative effect on the scores. The
second additional feature set swapped the
FIRST_WORD feature for the
WORD_POSITION_NORM feature.
Amongst these three feature sets that tied for
the top score, we chose the one that resulted in
the fewest features. While the second addi-
tional feature set swapped one feature for an-
other, it actually results in more features be-
cause the FIRST_WORD feature is a single
feature while the WORD_POSITION_NORM
feature actually contains 11 features – one for
each decimal value from 0.0 to 1.0 in 0.1 in-
crements.

Table 2.2.2.3: Best Feature Set

WORD
PREV_LABEL

NUM_ON_END
DASH

FIRST_CHAR_CAP
COMMA

GREEK_CHAR_CONTAINS
GREEK_CHAR_INDIV_CONTAINS

FIRST_WORD
PREV_WORD

PREV_PREV_WORD
PREV_PREV_PREV_WORD

NEXT_WORD
NEXT_NEXT_WORD

NEXT_NEXT_NEXT_WORD
NEXT_NEXT_NEXT_NEXT_WORD

2.3 Performance Analysis
This section details the performance of our
Maximum Entropy Classifier using our best
feature set that is described in the previous
section. We first discuss the precision, recall,
and FB1 scores on the test set. We then pro-
vide an analysis of the successes and failures
of our parser. We end with a discussion of
possible improvements that could fix our
parser's popular errors.

2.3.1 Precision, Recall, and FB1
Table Set 2.3.1a shows the scores produced by
the provided nerEval script using our best fea-
ture set. Table Set 2.3.1b shows the baseline
scores using only PREV_LABEL and WORD
as features. As seen in the tables, we were able
to make significant improvement in the over-
all accuracy from 83.72% to 90.57%, and in
the overall FB1 from 40.40 to 67.38. While
we were able to improve all entity category
FB1 scores, the DNA and RNA entity catego-
ries saw the largest improvements with 17.56
to 59.60 and 6.12 to 59.92 respectively. These
categories benefitted greatly from the "previ-
ous word" and "next word" groups of features.

Phrases Exist 7,119
Phrases Found 6,591
Phrases Correct 4,619

Overall Accuracy 90.57

 Preci-
sion Recall FB1 Phrase

Count
Overall 70.08 64.88 67.38 6,591

DNA 66.76 53.82 59.60 1,128

RNA 66.98 54.20 59.92 106

Cell Line 63.78 53.03 57.91 439

Cell
Type

72.22 67.18 69.60 853

Protein 71.32 69.96 70.63 4.065
Table Set 2.3.1a: Performance scores produced by the

nerEval script on the standard test set with our best fea-
ture set (detailed in Table 2.2.2.3).

[6]

Phrases Exist 7,119
Phrases Found 4,173
Phrases Correct 2,281

Overall Accuracy 83.72

 Preci-
sion Recall FB1 Phrase

Count
Overall 54.66 32.04 40.40 4,173

DNA 35.59 11.65 17.56 458

RNA 9.23 4.58 6.12 65

Cell Line 75.00 16.48 27.02 116

Cell
Type

45.15 47.76 46.42 970

Protein 61.90 38.30 47.32 2,564
Table Set 2.3.1b: Performance scores produced by the
nerEval script on the standard test set with the baseline

feature set (PREV_LABEL and WORD only).

To gauge the relative importance of each
feature in our best feature set we gathered
score data for each feature set that could be
generated by removing one feature from the
best feature set. Table 2.3.1 shows the change
in scores caused by removing one feature from
the best feature set. As highlighted in the ta-
ble, the most important of our extra features
was the NEXT_WORD feature. Removing
this feature caused significant drops in FB1
scores, with the largest changes of -16 in DNA
FB1 and -44.70 RNA FB1!

The important of the additional "next

word" features decreases as we move farther
away from the current word. A similar pattern
is seen in the "previous word" features.
PREV_WORD is not nearly as important as
NEXT_WORD because removing
PREV_WORD only causes a maximum drop
in an FB1 score of 7.43, but the other "previ-
ous word" features seem to have slightly less
than equal importance to their respective "next
word" feature (i.e. removing
PREV_PREV_WORD causes slightly smaller
drops in comparison to removing
NEXT_NEXT_WORD).

Another interesting result of this analysis
is that, as highlighted in the table, on three oc-
casions removing a feature actually increases
the score. Removing FIRST_WORD or
PREV_PREV_WORD improves the cell line
FB1 score while removing NUM_ON_END
improves RNA FB1. The improvements are
rather small and are outweighed by the up to
5.02 FB1 decreases that occur in other catego-
ries, so the overall net performance change is
still negative.

Table 2.3.1: Change in Scores by Removing Features

 Change in…

Removed Feature Overall
Accuracy

Overall
FB1

DNA
FB1

RNA
FB1

Cell Line
FB1

Cell Type
FB1

Protein
FB1

COMMA -0.40 -1.40 -2.17 -0.26 -1.67 -1.39 -1.10
DASH -0.76 -2.82 -5.30 -4.26 -5.10 -3.40 -1.95

FIRST_CHAR_CAP -0.44 -2.45 -1.88 -0.36 -1.80 -0.99 -2.98
FIRST_WORD -0.25 -1.01 -2.27 -1.24 0.23 -1.68 -0.58

GREEK_CHAR_CONTAINS -0.49 -1.67 -2.34 -1.30 -2.86 -1.87 -1.33
GREEK_CHAR_IN-
DIV_CONTAINS -0.68 -2.42 -5.27 -1.59 -3.34 -1.33 -2.08

NEXT_NEXT_NEXT_NEXT_WORD -0.21 -0.86 -1.85 -1.00 -0.74 -1.31 -0.50
NEXT_NEXT_NEXT_WORD -0.57 -1.82 -3.85 -3.14 -0.16 -1.48 -1.45

NEXT_NEXT_WORD -1.17 -3.72 -5.88 -4.02 -6.63 -3.09 -2.85
NEXT_WORD -2.51 -9.21 -16.00 -44.70 -7.74 -14.32 -5.94
NUM_ON_END -0.62 -2.21 -2.14 0.69 -0.29 -3.38 -2.35

PREV_PREV_PREV_WORD -0.68 -2.24 -5.27 -0.19 -2.22 -2.58 -1.47
PREV_PREV_WORD -0.56 -2.52 -5.02 -4.17 0.11 -1.60 -2.41

PREV_WORD -0.61 -3.96 -7.43 -7.11 -2.73 -4.36 -2.91

[7]

2.3.2 Successes and Failures
In this section we explore the successes and
failures of our Maximum Entropy Classifier.
We present six examples that detail the ranges
of good and bad decisions that we found in
our classifier's output. As all of these exam-
ples show, our previous and next word sets of
features are the strongest explanations for
most of our correct and incorrect classifica-
tions.

2.3.2.1 Perfect, Perfect, Perfect
In several instances, our classifier was able to
correctly label all words in the sentence. Ex-
ample 2.3.2.1 shows such a sentence. The sen-
tence contains both words of the DNA and
protein categories. Our classifier successfully
labels proteins that span single words, such as
"AML-1B" and "OSF2." Our system is also
able to correctly classify sequences of words
in both the DNA and protein categories, such
as "osteoblast-specific cis-acting element" and
"PEBP2 alpha/AML-1 family." It is also able
to sequences as proteins correctly where a
filler word exists inbetween the sequence and
the classifier correctly classifies the filler
word as in the O category. This is seen in the
correct classification of the word "of" near the
end of the sentence.

Example 1

 Word Gold Label Guessed Label
Thus O O
this O O

study O O
demonstrates O O

that O O
AML-1B protein protein

can O O
increase O O

gene O O
expression O O

of O O
an O O

osteoblast-specific DNA DNA
gene DNA DNA

through O O
its O O

binding O O

to O O
an O O

osteoblast-specific DNA DNA
cis-acting DNA DNA
element DNA DNA

and O O
presents O O
evidence O O

that O O
OSF2 protein protein

is O O
a O O

member O O
of O O
the O O

PEBP2 protein protein
alpha/AML-1 protein protein

family protein protein
of O O

transcription protein protein
factors protein protein

. O O

2.3.2.2 Errors on Long Sequences
Example 2.3.2.2 is another example in which
we identify most labels except for a few. The
first error is that the word "erythropoietin" is
labeled as other instead of as a protein. After
examining all of the other occurances of
"erythropoietin" in our corpus, we found that
"erythropoietin' is labeled as protein only
when it is followed either by "(EPO)" or "in-
duces." In some sentences, it was labeled as a
cell type, but only when proceeded or fol-
lowed by different words. Our most important
features aside from the base features are the
"previous word" and "next word" sets of fea-
tures. We presume that since "erythropoietin"
is not preceded or followed by any of these
words to give it weight as a protein or cell
type, we miss the target here.

The case for "highly" and "purified" are
similar in that we believe our classifier missed
the labels because of the "previous word" and
"next word" sets of features. Our best feature
set contains the previous three words as fea-
tures as well as the next four words. The main
identifying word that must be known in this
case is the word "cells." The fact that the se-

[8]

quence of words "highly purified human col-
ony forming unit-erythroid" is immediately
followed by the word "cells" is what leads a
human reader to determine that many of the
words before "cells" are part of a sequence
that define a cell type. Since our best feature
set only includes the next four words, the la-
beling decision for "highly" and "purified" are
not privy to the knowledge of the word "cells"
that is nearby. Our classifier is able to cor-
rectly classify the words in the sequence as
soon as the word "cells" becomes one of the
"next word" features.

Like the majority of the long cell type se-
quence, the last two labeled words in the sen-
tence, "CD34(+)" and "cells" are again labeled
correctly because of the "CD34(+)" labeling
decision's knowledge of the future word
"cells" and because of the "cell" labeling deci-
sion's knowledge of the previous label being a
cell type and the previous word being
"CD34(+)." We experimented with removing
all of the previous and next word features and
saw that as a result that many of the sequences
were not successfully labeled.

Example 2.3.2.2

Word Gold Label Guessed Label
We O O

examined O O
signaling O O

by O O
erythropoietin protein O

in O O
highly cell_type O

purified cell_type O
human cell_type cell_type
colony cell_type cell_type

forming cell_type cell_type
unit-erythroid cell_type cell_type

cells cell_type cell_type
generated O O

in O O
vitro O O
from O O

CD34(+) cell_type cell_type
cells cell_type cell_type

. O O

2.3.2.3 Same Word Different Labels
In these section we examine how the same
word can have different labels depending on
its context. Example 2.3.2.3a is a sentence
where the word "sickle" appears as both a cell
type and as an "other." Similar to our explana-
tion in the previous section, the correct label-
ing of "sickle" as a cell type in the first occur-
rence is primarily due to its knowledge of the
word "cells" in the future. In the second occur-
rence, the correct label of other is given even
though the word "cell" appears as the next
word. We believe that the correct labeling in
this case is because of its knowledge of the
word "disease" immediately after "cell",
which is a strong indicator that both the word
"sickle" and "cell" are modifiers specifying a
particular disease.

Example 2.3.2.3a
Word Gold Label Guessed Label
The O O

abnormal O O
adherence O O

of O O
sickle cell_type cell_type
red cell_type cell_type

blood cell_type cell_type
cells cell_type cell_type

(O O
SS cell_type cell_type

RBC cell_type cell_type
) O O
to O O

endothelial cell_type cell_type
cells cell_type cell_type
has O O

been O O
thought O O

to O O
contribute O O

to O O
vascular O O
occlusion O O

, O O
a O O

major O O
cause O O

of O O
morbidity O O

[9]

in O O
sickle O O
cell O O

disease O O
(O O

SCD O O
). O O

Example 2.3.2.3b shows another example

where "sickle" is correctly identified as being
in the other category. Again, like the case with
the word "disease", the labeler's knowledge of
"anemia" and "patients" after the word "cell"
are probably important indicators that "sickle"
and "cell" in this case should both be in the
other category.

Example 2.3.2.3b
Word Gold Label Guessed Label

In O O
addition O

HU O protein
stimulates O O

the O O
synthesis O O

of O O
fetal protein O

hemoglobin protein O
in O O

sickle O O
cell O O

anemia O O
patients O O

. O O

The following set of examples show the
word "endothelial" labeled correctly as both a
cell type and a cell line depending on the con-
text. In Example 2.3.2.3c "endothelial" is cor-
rectly labeled due to the presence of "cells"
immediately following the word. In this ex-
ample we believe "sickle erythrocytes" is not
labeled as a cell type because the word "with"
is generally a separator between entities and
ends up putting a lot of weight on the other
category, overruling the information that
"erythrocytes" has about the word "cells" as a
future word.

Example 2.3.2.3c
Word Gold Label Guessed Label
sickle cell_type O

erythrocytes cell_type O
with O O

endothelial cell_type cell_type
cells cell_type cell_type
in O O

Example 2.3.2.3d presents another exam-

ple where "endothelial" is correctly labeled as
a cell line. In this case, we believe "endothe-
lial" is labeled as a cell "something" because
of the word "cells" immediately following it,
and that particular "something" is a cell line
because of the PREV_LABEL feature. This
example is also a great example where our
classifier is able to correctly label a sequence
of words that is more than five words long. In
this case, "cultured" is such a strong indicator
of a cell line that it does not need to know
about all of the words in the sequence in order
to make the proper decision. In fact, the deci-
sion that "cultured," which was propagated
along to the other decisions by the
PREV_LABEL feature, is probably the sole
reason that the rest of the sequence is labeled a
cell line instead of a cell type.

Example 2.3.2.3d

Word Gold Label Guessed Label
cultured cell_line cell_line
human cell_line cell_line

umbilical cell_line cell_line
vein cell_line cell_line

endothelial cell_line cell_line
cells cell_line cell_line

(O O
HUVEC cell_line cell_line

) O
resulted O O

Example 2.3.2.3e is another example

where our classifier correctly classifies a se-
quence longer than five. In this case, the deci-
sion was easy because the words "cell line"
are in the middle of the phrase and visible to
all of the words in the sequence. Unfortu-

[10]

nately, our classifier is a little overzealous and
continues the labeling escapade by labeling
"with" and "mutated" with cell line.

Example 2.3.2.3e

Word Gold Label Guessed Label
transfectants O O

of O O
the O O

porcine cell_line cell_line
vascular cell_line cell_line

endothelial cell_line cell_line
cell cell_line cell_line
line cell_line cell_line

PIEC cell_line cell_line
with O cell_line

mutated O cell_line

Example 2.3.2.3f shows an interesting ex-
ample where we label "endothelial" incor-
rectly. We have our reservations in this case in
regards to the accuracy of the hand labeled
"truth" answers. We feel that the phrase "en-
dothelial and RAW264.7 cells" is actually dis-
tributing both "endothelial" and "RAW264.7"
to "cells", and thus making the meaning more
explicit we read the phrase as "endothelial
cells and RAW264.7 cells." Due to our inter-
pretation of the phrase's meaning, we believe
that endothelial should not be an "other" in the
hand labeled set and should be a cell type due
to similarity with Example 2.3.2.3c.

Example 2.3.2.3f

Word Gold Label Guessed Label
expression O O

in O O
endothelial O cell_type

and O O
RAW264.7 cell_line cell_line

cells cell_line cell_line

2.3.2.4 Previous Label Issues
Example 2.3.2.4 shows an instance where the
first word in a conjunction is correctly labeled
as a protein but the second word is labeled as
an other. We believe that this is mostly be-

cause we only include knowledge of the pre-
vious label, and thus the labeler does not know
about TCRzeta's label when making its deci-
sion on "p56(lck)." We posit that with "previ-
ous previous label" knowledge our classifier
would be able to correctly classify "p56(lck)"
in this situation because the fact that
"p56(lck)" is in a conjunction with another
word that is a protein should increase the
probability that "p56(lck)" is also a protein.
We did not include more than one previous
label as a feature because the provided infra-
structure prohibited it.

Example 2.3.2.4

Word Gold Label Guessed Label
Diminished O O
expression O O

of O O
TCRzeta protein protein

and O O
p56(lck) protein O

that O O
are O O

2.3.3 Future Improvements
As indicated by Example 2.3.2.4, we believe
the most important improvement to our parser
will come from adding additional label his-
tory, such as the "previous previous label" and
"previous previous previous label." We did
not find an easy way to include these features
within the provided infrastructure, but we be-
lieve the addition of these features will in-
crease performance when labeling items in
conjunctions or lists.

Another possible improvement would be
to incorporate a second pass through the sen-
tence. Example 2.3.2.2 included a long se-
quence of words that should all be labeled as a
cell type. Our classifier missed the first two
words "highly" and "purified." Perhaps if we
took a second pass through the sentence and
allowed "highly" and "purified" to have
knowledge of the labels in front of them, then
we would be able to correctly label the entire
sequence.

[11]

3 Treebank Parsing
We implemented a CKY parser for the tree-
bank parsing task. In this section we describe
our parser's implementation, provide an analy-
sis of our parser's performance, and discuss
possible improvements to the parser that
would correct frequently occurring errors.

3.1 Implementation
The CKY parsing algorithm is straightforward
and well known. In this section we will only
describe the key optimizations used. We will
not describe the standard implementation de-
tails such as how to follow the back points to
generate the final parse tree.

After generating the lexicon and grammar
in the training phase, we create several data
structures that we using in the CKY algorithm
to manage nonterminals and grammar rules.
First, we create an array ntToWord that con-
tains all of the nonterminals that are pretermi-
nal. Next, we create an array that contains all
nonterminals, with the nonterminals from
ntToWord being at the same index as in
ntToWord. Additionally, we create two flat ar-
rays binaryRules and unaryRules, containing
the binary rules and unary rules from the
grammar. Each rule in the two arrays contains
as the parent/children by their index into the
array of nonterminals as well as the rule's
score. We also create a temporary hash map
within the training method that maps the string
version of each nonterminal to its index in the
array. We need this hash map because the
provided grammar class does not reference
nonterminals by an integer ID and instead di-
rectly uses the string representations. We use
standard three-dimensional arrays for the
score and back pointer data structures.

All optimizations revolve around minimiz-
ing the number of nonterminals that we loop
over as well as minimizing the amount of
processing time required to iterate over a set
of values. The algorithm has three basic sec-
tions. The first section involves looping over
the nonterminals and placing a probability in a

cell of the score array if the nonterminal is a
preterminal. Naturally, instead of looping over
all nonterminals here we only loop over the
nonterminals in ntToWord.

The second section involves considering
unary rules. In the standard pseudocode, one
iterates over all pair combinations of nonter-
minals indicated by the placeholders A and B.
This can be unwieldy because our corpus con-
tains 3,919 nonterminals. In two layers of for
loops this results in considering 15.4 million
different nonterminal pairs. To sidestep this
issue, it is important to notice that we only
perform meaningful work if the rule AB ex-
ists in the grammar. Thus to efficiently im-
plement this section we loop over the
unaryRules array, skipping the inner computa-
tions if the rule's score is zero or if the score
of B in the current cell is zero.

The third section involves three loops over
the length of the sentence. Unfortunately,
these three loops cannot be reduced. Inside the
innermost loop are two sections. The second
section is managing unary rules, which is op-
timized in the same way as described in the
previous paragraph. The first section inside
these loops involves iterating over all triplet
combinations of the nonterminals indicated by
the placeholders A, B, and C. If we were to
naïvely implement this section as three for
loops then we would be iterating over 60.2 bil-
lion triplets with our current dataset.

To efficiently iterate over these triplets, we
iterate over the binaryRules array. If B's score
in the cell of the score array that will be used
in the impending probability calculation is
zero, or C's score in its respective cell is zero,
or the rule's score is zero, then we skip imme-
diately to the next rule. Otherwise, we perform
the calculations.

A final, smaller optimization that we im-
plemented was from noticing that within many
of the for loops the first two dimension indices
used to index into the score and back pointer
arrays are fixed. To reduce the amount of
memory lookups, at the beginning of such sec-

[12]

tions we index two dimensions into the arrays
and keep pointers to the resulting one-
dimensional array. We use these pointers
within the inner loops instead of re-indexing
into the original arrays. This optimization was
far less important than the others, but it re-
duced the average computation time per sen-
tence by 400 milliseconds in the case of 69-
word sentences.

These simple but important optimizations
enable our implementation to parse 20-word
sentences in 125 milliseconds and 69-word
sentences in 4.8 seconds. Table 3.1 shows the
average processing time of our parser by sen-
tence length. The only lengths that are shown
are lengths that exist in the provided genia test
set. All computations were performed using
one core of an Intel Core 2 Duo Mobile Proc-
essor T7500 running at 2.2 GHz.

Table 3.1: Parsing Speed
Length Average Time

(milliseconds)
Length Average Time

(milliseconds)
6 6 30 432
7 6 31 374
8 7 32 436
9 13 33 634
10 14 34 811
11 19 35 635
12 35 36 860
13 31 37 676
14 41 38 1,160
15 48 39 1,087
16 119 40 1,319
17 72 41 1,165
18 117 42 1,393
19 165 43 1,007
20 125 45 1,615
21 154 46 1,433
22 164 47 1,283
23 190 49 1,455
24 226 51 2,034
25 212 54 2,206
26 252 58 3,171
27 288 59 3,154
28 386 69 4,849
29 347

3.2 Performance Analysis
In this section we state and show some exam-
ples of the parser without the chunking and

the er-rors it leads to. In Example 3.2a, the
only error made by the parser is to label NP as
ADJP and NN as JJ. That is, parsing a Noun
Phrase as an Adjective Phrase. This in turn
leads to parsing a Noun as an Adjective. This
is a common error that the non-chunking
parser makes.

Example 3.2a: Green indicates "Gold" tag while

red indications our parser's tag.
In Example 3.2b, the non-chunked version

positions four branches of sub-trees in a dif-
ferent location and there is one labeling error
of an NNS tag as an NN tag. A noun in plural
form is parsed as a noun in singular form,
which we consider a minor error. The wrong
positioning of the subtrees is a more serious
error. The green-colored subtree in the images
is supposed to be positioned as a Prepositional
Phrase (PP) under an inner Noun Phrase (NP)
subtree whereas our parser positions it as a PP
under an outer level NP subtree which leads to
the outer Noun phrase now having two con-
secutive PP's. One possible way to ensure that
this doesn't happen is to penalize the score
when it tries to place such prepositional
phrases one after the other. We are proposing
this solution as we think that such consecutive
prepositional phrases are not common in Eng-
lish. In the second case of "T and B lympho-
cytes" (the teal-colored subtree) the change in
positioning can be attributed to the use of the
conjunction "and." It could be that instead of
interpreting the statement as "T lymphocytes
and B lymphocytes" it is interpreted as "T
AND B lymphocytes" which leads to the sepa-
ration of "B lymphocytes" as a separate Noun
Phrase.

[13]

The "Gold" tree.

Our parser's tree.

Example 3.2b: Similar colored regions in each image are identical subtrees. The red NNS or NN tag shows the in-
correct tag that exists in the blue-purple subtree.

In Example 3.2c, the sentence is "PU.1 is
completely absent from peripheral T cells and
most T cell lines based on sensitive RT-PCR
assays." The gold parsing breaks the sentence
into a Noun phrase and a Verb phrase. But our
non-chunked parser is breaking this into two

sentences connected by an "and." This can
again be explained by following the argument
for the previous example. This is again a
wrong interpretation of what the "and" in the
middle of the sentence is connected.

The "Gold" tree.

Our parser's tree.

Example 3.2c: Similar colored regions in each image denote similar subtrees.

Going on to Example 3.2d, here the errors
are due to wrong tagging. The incorrect back
propagation of the right sub tree as a verb
phrase and then as a sentence instead of as a
Preposi-tion phrase leads to the wrong inter-
pretation of a verb phrase with "rapidly" as an
adverb as an adjective phrase with "tyrosine-
phosphorylated" as an adjective phrase.

Example 3.2d: Green = "Gold" tag, red = parser's tag.

In Example 3.2e, at the start of the bottom-

up parsing, the part of the sentence "a subfam-
ily of the Ets Family of DNA-binding pro-
teins" is where the wrong positioning of sub
trees hap-pens. The rest of the sentence is
parsed correctly. So, instead of tagging the
sentence as "a sub-family of the Ets family of
DNA-binding proteins" our parser is tagging it
as "a subfamily of the Ets family of DNA-
binding proteins." Thus the wrong positioning
of the trees due to con-fusion about which
preposition combines which part of the sen-
tence.

[14]

The "Gold" tree.

Our parser's tree.

Example 3.2e: Similar colored regions in each image denote similar subtrees.

Example 3.2f is again of wrong position-
ing of a sub tree. The verb "expressed" in the
sentence should apply to the prepositional
phrase "during development" whereas our
parser com-bines it with the noun phrase "B
cells and T cells." This leads to the assump-
tion that the adverb "exclusively" applies to

the prepositional phrase "in B cells and T cells
during development." There are many exam-
ples in which our parser does create the entire
structure correctly but we are not presenting
that here. These exact matches, as described in
Table 3.3a, are up to 33% of the test sen-
tences.

The "Gold" tree.

Our parser's tree.

Example 3.2f: Similar colored regions in each image denote identical subtrees.

3.3 Improvements
We implemented second order vertical mark-
ovization to improve our parser's performance.
Our implementation of vertical markovization
allows a number to be passed by command
line to the program that specifies the order of
vertical markovization to use. We experi-
mented with different orders of vertical mark-
ovization to see the effect on the F1 score for
the test set. Table 3.3a shows the average
score for several orders of vertical markoviza-
tion for all sentences in the test set with no
more than twenty words in the sentence while
Table 3.3b shows the average score using the

entire test set, which includes sentences up to
length 69. We also include the total processing
time for the respective test set.

As seen in Table 3.3a, the sweet spot
given our current training set is a third order
vertical markovization, which provides a
slight improvement over second order. High
orders decrease performance in comparison
with the third order because of the increasing
sparseness due to a fixed training set size. If
we were to use additional data, third order im-
provement over second order would probably
be larger and we might even find additional
improvement by moving to fourth order. One

[15]

important note is that while sixth order per-
forms worse than third order, it still has higher
scores in comparison to first order.

Another interesting feature of this data is
that third order vertical markovization requires
three times the processing time of order one,
while order four requires five times that of or-
der one and order five requires almost eight
times that of order one. This increase in proc-

essing time is mostly due to increasing the
amount of nonterminals and thus increasing
the amount distinct rules that exist in the
grammar. The only slight increase in process-
ing time from order five to order six is pre-
sumably because our training set contains few
sentences with a tree depth larger than five.

Table 3.3a: Average Scores on All Sentences with Twenty Words or Less
Order Precision Recall F1 Exact Match (%) Test Set Processing Time (seconds)

1 76.84 73.94 75.36 9.26 4
2 84.44 83.52 83.98 33.33 6
3 84.41 84.14 84.28 33.33 12
4 81.72 82.10 81.91 29.63 20
5 80.90 81.79 81.34 25.93 31
6 79.47 79.59 79.53 22.22 33

Table 3.3b: Average Scores on All Sentences from the Test Set
Order Precision Recall F1 Exact Match (%) Test Set Processing Time (seconds)

1 71.35 66.63 68.91 3.90 66
2 77.34 76.59 76.96 16.88 123
3 77.38 77.08 77.23 16.23 211
4 75.37 75.62 75.49 14.29 325

Table 3.3b shows similar trends when test-
ing on the entire test set, which contains sen-
tences of up to length 69. We only include up
to order four in the table because the higher
orders required more memory than the 2.7 GB
that we were allocating to the process. Again,
third order vertical markovization scores the
best (again only slightly better than order
two), but the cost of almost twice the compu-
tation time over second order is magnified by
the larger test set. In terms of computation
time, it is clear that one gets the most per-
formance for the dollar with order two vertical
markovization.

In Section 3.2 we saw that labeling a noun
as an adjective, and singular/plural noun mix-
ups were common. We believe that additional
training data would significantly help in these

cases because the errors are probably because
the words were never seen or infrequently
seen in the training set.

Another problem we saw as incorrect posi-
tioning of subtrees due to misinterpreting the
phrases and their positions in the sentence.
These types of errors fall into two categories:
grammar rule violations and sentence interpre-
tation dependence. The grammar rule viola-
tion errors can be avoided by using additional
training data that would result in strong prob-
abilities that give "penalties" to grammar vio-
lations. The sentence interpretation issues are
more difficult to solve, but could definitely
benefit from some type of shallow semantics
processing.

[16]

4 NER/Parser Combination
This section deals with the performance re-
sults after the NER and the parser are com-
bined. We compare the results we obtain with
the non-chunked versions to see how much of
an improvement we receive from chunking. In
Example 4a, the non-chunked version has the
error of positioning stuff at the wrong place. It
combines parts of three phrases to form one
phrase, "by", "binding", "to" and putting them
as part of a prepositional phrase and breaking
up a noun phrase "high affinity receptors" by
forming a "Unlike Coordinated Phrase" with
an adjective. As we see in the chunked ver-
sion, one of the two errors is corrected due to
the chunking part. The "high affinity recep-
tors" gets put back into one phrase and the
UCP is no longer created. But the other error

with relation to "by binding to" is still made.
This can be considered as an example to show
that chunking does make things a little better.

In Example 4b, the non-chunked version
again exhibits both errors, wrong labeling of
tags and wrong positioning of a few sub trees.
The non-chunked version wrongly labels
"resting" as an adjective, which leads to the
combining of "not in memory" as an adverb
phrase and further on combined with "resting"
to become an adjective phrase. This wrong la-
beling leads to most of the wrong combina-
tion. When you look at the chunked version,
even though one of the errors of labeling "rest-
ing" as an adjective is rectified, it still does not
get the sub trees right. A major part of the
right tree is combined with the left subtree
leaving an even worse version of the non-
chunked tree.

The "Gold" tree.

Our parser's tree without chunking.

Our parser's tree with chunking.

Example 4a: Similar colored regions in each image denote identical subtrees.

[17]

The "Gold" tree.

Our parser's tree without chunking.

Our parser's tree with chunking.

Example 4b: The colored region is the region that remains fairly constant.

We had dealt with the non-chunked and
gold versions of Example 4c as Example 3.2f.
Now, if we compare the non-chunked and
chunked version, we can see that it still inter-
prets it in a wrong way. The verb "expressed"
is applied to a prepositional phrase; it is ap-
plied to more than just the phrase it is sup-
posed to apply to. The prepositional phrase
"exclusively in B cells and T cells" should be
interpreted as the "AND" connector between
B cells and T cells, but the chunked parser in-
terprets it as an "AND" connector between
"exclusively in B_cells and T_cells during de-
velopment". Thus though it avoids one error,
it brings in a different kind of error. This ex-
ample stands for cases where the chunked
parser slightly worsens the result because of
chunking.

Example 4c: Our parser's tree with chunking. The col-
ored region is the region that changes in relation to the

unchunked version from Example 3.2f.

Example 4d continues from Example 3.2e,
the non-chunked version made the error of
misinterpreting the purpose of the "of" prepo-
sition and thus instead of tagging the sentence
as "a subfamily of the Ets family of DNA-
binding proteins" our parser is tagging it as "a
subfamily of the Ets family of DNA-binding
proteins." In the chunking version, it does not
do this and instead perfectly follows the cor-
rect structure and also identifies the correct la-
bels. This is an example to show that adding

[18]

the chunking part actually helps avoid the er-
rors in the non-chunking parser.

Example 4d: Our parser's tree with chunking. The parse

is a perfect match to the Gold version from Example
3.2e.

In Example 4e, we show a case where the

non-chunking parser does not make any mis-
takes but the chunked parser makes an error in
interpreting the preposition usage. Notice that
the gold and non-chunked versions are similar
(including the labels). In the chunked version,
the sentence is interpreted as "the suppressor
function in CEM_C1_cells by dexa-

methasone" instead of "the suppressor func-
tion in CEM C1 cells by dexamethasone."

Thus it can be seen that we cannot really
say whether chunking helps or not even when
we do an in-depth analysis by comparison. In
some cases it seems to help, in others it seems
to worsen, and in some it seems neutral.

5 Member Contributions
Todd and Pavani pair programmed the major-
ity of the assignment. Todd individually cre-
ated the hill climbing feature selection for the
Maximum Entropy Classifier, conceived and
implemented all optimizations, and developed
most maximum entropy classifier features.
Pavani individually selected the performance
analysis examples. Todd and Pavani collec-
tively wrote the report, discussed the exam-
ples/performance analysis, and created the tree
visualizations. Todd wrote all sections of the
report except the sections with examples.

The "Gold" tree and our parser's tree without chunking.

Our parser's tree with chunking.

Example 4e: Similar colored regions in each image denote similar subtrees.

