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1 Introduction 
For PA3 we implemented a Maximum En-
tropy Classifier, which we used for a Maxi-
mum Entropy Markov Model. We developed 
many features for the model, of which se-
quence features such as previous word and 
next word has the most positive effects. Our 
best feature set achieves an accuracy score of 
90.57 and overall FB1 of 67.38 on the genia 
data set. Our parser achieves its best F score 
of 84.28 on the genia data set by using third 
order vertical markovization. Due to our op-
timizations described in Section 3.1, our 
parser is able to parse 20-word sentences in 
125 milliseconds and 69-word sentences in 4.8 
seconds on average when running on a single 
core of an Intel Pentium Core 2 Duo T7500 @ 
2.2 GHz. 

2 Maximum Entropy Markov 
Models 

In this section we discuss the implementation 
details related to fast training and selecting the 
optimal feature set from the features that we 
created. We end the section with a perform-
ance analysis of the positive and negative as-
pects of our best feature set. 

2.1 Training Implementation 
The training routine for Maximum Entropy 
models is fairly straightforward and easy to 
implement. With that said, there are several 
key design decisions that can have a large im-
pact on performance. In this section we briefly 
discuss the key modifications to the base algo-
rithm that gave us significant reductions in 
computation time. 

The first task in implementing the Maxi-
mum Entropy Classifier was to implement the 
getLogProbabilities function. This function is 
used by many parts of the classifier and is im-
portant to implement efficiently. Thankfully, 
there was only one obvious way of imple-
menting the function, which we will not 
bother to describe. We tried using the pro-
vided SloppyMath class to perform calcula-
tions quickly, but the class' use actually re-
sulted in incorrect output. 

The primary function where optimization 
can make a difference is the calculate func-
tion, which takes a weight vector as input and 
computes the objective function and its de-
rivatives. The most naïve way to implement 
this function is to compute the objective and 
derivatives in two separate loops, applying the 
regularization at the end. This is the most 
straightforward way to implement the method 
because it is exactly how the process is de-
scribed in mathematical terms. 

Assuming one implements the function in 
this way optimally, one would include the ob-
jective and derivative penalties in a single for 
loop and assign variables as far outside of for 
loops as possible. For example, the objective 

penalty is 
i

i
2

2

2


, so one would perform the 

computation 22  once within the function 
and then use the value as needed. The first ob-
vious optimization to notice here is that the 
value that we divide by in the object and de-
rivative penalties, which are 22  and 2  re-
spectively, do not change between calls to the 
function. Since the calculate function is called 
many times, computing these values in the 
class' constructor results in the training being 
1.08 times faster. 
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The second important optimization is to 
simply compute the objective and derivatives 
in one for loop. This halves the number of 
calls to getLogProbability, making the func-
tion 1.23 times faster than the base, naïve im-
plementation. 

The third important optimization is to no-
tice that for each item in the training set, only 
one value from getLogProbabilities is used in 
its log form – the one that is included in the 
objective calculation. Yet all of the values re-
turned by getLogProbabilities are needed in 
their straight probability form for the deriva-
tive calculations. Thus for our final optimiza-
tion we created a copy of the getLogProbabili-
ties function called getProbabilities, that did 
not compute the log of each probability before 
returning the array. We then take the log of 
the single value that is included in the objec-
tive calculation and do not have to use the 
Math.exp function to convert all of the log 
probabilities for use in the derivative calcula-
tions. Including this final optimization re-
sulted in an implementation that was 1.75 
times faster than the base, naïve implementa-
tion.  

2.2 Features 
In this section we describe the features that we 
developed, our hill-climbing method for find-
ing the best feature set, and the importance of 
each feature in our final feature set. 

2.2.1 Feature Descriptions 
We developed many features for the task of 
named entity recognition of DNA, RNA, cell 
line, cell type, and protein names. Our features 
can be characterized into several groups: base 
features, number-related, alphabetical fea-
tures, non-alphanumeric-related, Greek char-
acters, sequence features, positional features, 
and other features. We created each feature by 
examining the words in the test set that are of 
each entity category and finding similarities 
between the words. The following tables de-
scribe each feature. 

 

Base Features 
WORD 

The current word. 
PREV_LABEL 

The label assigned to the previous word in the sentence. 
 

Number-Related Features 
HAS_NUMBER 

The current word contains at least one number. 
NUM_ON_END 

The end of the word contains a number. 
CHAR_NUMBER_COUNT 

The amount of characters that are numbers. 
CONTINUOUS_NUMBER_COUNT 

The amount of numbers in the word where contiguous 
spans of characters that are numbers are counted as a 

single number. 
ALL_NUMS 

All characters are numbers. 
 

Alphabetical Features 
LOWERCASE 

All alphabetical characters are lowercase. 
UPPERCASE 

All alphabetical characters are uppercase. 
FIRST_CHAR_CAP 

The first character is an uppercase letter. 
HAS_CAP 

The word contains an uppercase letter. 
CHAR_CAP_COUNT 

The amount of uppercase letters. 
CONTINUOUS_CAP_COUNT 

The amount of uppercase letters in the word where con-
tiguous spans of uppercase letters are counted as a sin-

gle uppercase letter. 
A_COUNT 

The frequency of the vowel 'A'. 
E_COUNT 

The frequency of the vowel 'E'. 
I_COUNT 

The frequency of the vowel 'I'. 
O_COUNT 

The frequency of the vowel 'O'. 
U_COUNT 

The frequency of the vowel 'U'. 
Y_COUNT 

The frequency of the vowel 'Y'. 
VOWEL_COUNT 

The amount of vowels in the word. 
CONSONANT_COUNT 

The amount of consonants in the word. 
CONSONANT_VOWEL_RATIO 

The ratio of consonants to vowels, truncated to one 
decimal place. The ratio is set to -1 * consonant count 

when the vowel count is zero. 
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MORE_VOWELS_THAN_CONS 
The vowel count is greater than the consonant count. 

ALL_ALPHANUMERIC 
All characters are alphanumeric. 

 
Non-Alphanumeric-Related Features 

DASH 
The word contains a dash ('-'). 

DASH_COUNT 
The amount of dashes ('-') the word contains. 

COMMA 
The word contains a comma. 

HAS_NONALPHANUMERIC 
The word contains at least one non-alphanumeric char-

acter. 
ONE_NONALPHANUMERIC 

The word contains only one 
non-alphanumeric character. 

 
Greek Character Features 

GREEK_CHAR_CONTAINS 
The word contains at least one 
spelled-out Greek character. 

GREEK_CHAR_INDIV_CONTAINS 
One feature for each Greek character. The amount of 

occurrences of that Greek character in the word. 
GREEK_CHAR_COUNT 

The amount of Greek characters in the word. 
 

Sequence Features 
PREV_WORD 

The previous word in the sentence (if it exists). 
PREV_PREV_WORD 

The word at (position-2) in the sentence (if it exists). 
PREV_PREV_PREV_WORD 

The word at (position-3) in the sentence (if it exists). 
PREV_PREV_PREV_PREV_WORD 

The word at (position-4) in the sentence (if it exists). 
NEXT_WORD 

The next word in the sentence (if it exists). 
NEXT_NEXT_WORD 

The word at (position+2) in the sentence (if it exists). 
NEXT_NEXT_NEXT_WORD 

The word at (position+3) in the sentence (if it exists). 
NEXT_NEXT_NEXT_NEXT_WORD 

The word at (position+4) in the sentence (if it exists). 
PREV_WORD_SHORT 

The previous word is less than four characters long. 
PREV_WORD_LONG 

The previous word is greater than ten characters long. 
FIRST_WORD 

The word is the first word in the sentence. 
WORD_POSITION 

The raw position of the word in the sentence. 

WORD_POSITION_NORM 
The position of the word normalized by the length of 

the sentence, truncated to one decimal place. 
 

Other Features 
LENGTH 

The amount of characters in the word. 
SHORT_LENGTH 

The word is a length smaller than four. 

2.2.2 Feature Selection 
We began our feature development process by 
creating features one at a time and executing 
the program with various feature combinations 
to see if each new feature improved perform-
ance. Aside from the fact that the possible 
number of combinations quickly spirals out of 
control, we ran into other problems. While 
testing with our first five or six features, we 
found that many features performed horribly 
alone or in certain combinations with other 
features. The amount of combinations that re-
sulted in dismal results would have quickly 
led us to believe that many of our features 
were worthless, but we found that for most 
features a few special combinations with other 
features existed that actually improved per-
formance over the baseline, which was using 
only the WORD and PREV_LABEL features. 

We soon realized that manually picking 
feature sets and evaluating each one in turn 
would not work. To solve this problem, we 
developed a feature selector that attempts to 
find the optimal feature set through hill climb-
ing with random walks. This hill climbing 
strategy is primarily controlled by the setFea-
tures function within the Maximum Entropy 
Classifier. 

2.2.2.1 Hill Climbing with Random Walks 
The basic premise of our feature selector is 
that we start with our current best known fea-
ture set, continually make changes to the best 
feature set creating a new feature set, apply 
the new feature set to the data generating a 
score, and replace the best feature set with the 
new feature set if the score increases. In the 
beginning, our best known feature set is the 
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base features WORD and PREV_LABEL. 
These features are permanent features that we 
include in all potential feature sets. 

All other features are considered "possible 
features." During each iteration, with a 15% 
chance we try a completely random feature set 
where each possible feature has a 50% chance 
of being included in the set. The other 85% of 
the time we create a new feature set based on 
the current best feature set such that each pos-
sible feature is flipped on or off with a prob-
ability of 0.5 / (number of possible features). 
Features are flipped on with the given prob-
ability if they are not included in the current 
best feature set, and features are flipped off 
with the given probability if they are members 
of the current best feature set. 

We keep track of all of the feature sets that 
our feature selector has attempted so that we 
do not waste time attempting the same feature 
set twice. For each feature set attempted, our 
feature selector writes the output results to a 
file, executes the nerEval script for computing 
per entity F scores given the previously writ-
ten file, and records the scores for the feature 
set in a CSV file. 

2.2.2.2 Feature Selector Objective Func-
tion 

We tried optimizing several different scores 
while hill climbing. Our first objective func-
tion that we tried to maximize was the overall 
F score. While this certainly worked in select-
ing features that improved performance over-
all, it had disappointing side effects for some 
of the entity categories. 

The amount of protein entities in the cor-
pus vastly outweighs the amount of other enti-
ties, such as RNA entities. Specifically, the 
hand-labeled test set contains only 313 RNA 
entities while it contains 7,598 protein entities. 
With our initial objective function (overall F 
score), our feature selector was able to maxi-
mize the objective by choosing feature sets 
that had a large positive impact on the protein 
category but had a large negative impact on 

the RNA category. When not including the 
sequence features, which we created after our 
initial hill climbing run, optimizing the overall 
F score resulted in our "best feature sets" not 
labeling any words as RNA entities. 

While optimizing the overall F score led to 
improvements across the frequently occurring 
entity categories, it resulted in poorer per-
formance across the less frequent entity cate-
gories such as RNA entities. To fix this prob-
lem we changed our objective function to be 
the sum of each entity category's F score. This 
change to the objective function was effective 
and caused our feature selector to select fea-
ture sets that generally improved performance 
in all categories. While our new objective 
function does not necessarily result in an op-
timized overall F score, we feel that it is more 
important to do reasonably well on all catego-
ries rather than have high performance on a 
few categories and low performance on others. 

2.2.2.3 Best Feature Set 
Over the course of one night our feature selec-
tor attempted 1,421 different feature sets. Ta-
ble 2.2.2.3 details our highest scoring feature 
set given the sum of category F scores objec-
tive function. 

Our most important features (aside from 
the base features) were the PREV_WORD and 
NEXT_WORD features. While creating fea-
tures, we quickly found the previous and next 
words to be valuable and we continually 
manually added additional features such as the 
"previous previous word" and "next next 
word" features to the possible feature set until 
we saw no increase in the objective function. 
As shown in the table, our feature selector 
found the four words after the current word to 
be useful while only the three words before 
the current word were useful. 

Out of our five number features, the fea-
ture selector only found NUM_ON_END to 
be useful. Of the non-alphanumeric features, 
only DASH and COMMA were important. 
The only alphabetical feature that was helpful 
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was the distinction between capitalized and 
uncapitalized words. While the features for 
containing spelled-out Greek characters and 
how many of each Greek character were use-
ful, the overall count of how many Greek 
characters were in the word did not help. None 
of the length features or word position features 
were helpful. 

Our feature selector also found two other 
feature sets that had identical scores to our 
best feature set in all categories. One of these 
additional feature sets contained all of the fea-
tures from our best feature set, but also con-
tained the feature 
ONE_NONALPHANUMERIC that had no 
positive or negative effect on the scores. The 
second additional feature set swapped the 
FIRST_WORD feature for the 
WORD_POSITION_NORM feature. 
Amongst these three feature sets that tied for 
the top score, we chose the one that resulted in 
the fewest features. While the second addi-
tional feature set swapped one feature for an-
other, it actually results in more features be-
cause the FIRST_WORD feature is a single 
feature while the WORD_POSITION_NORM 
feature actually contains 11 features – one for 
each decimal value from 0.0 to 1.0 in 0.1 in-
crements. 

 
Table 2.2.2.3: Best Feature Set 

WORD 
PREV_LABEL 

NUM_ON_END 
DASH 

FIRST_CHAR_CAP 
COMMA 

GREEK_CHAR_CONTAINS 
GREEK_CHAR_INDIV_CONTAINS 

FIRST_WORD 
PREV_WORD 

PREV_PREV_WORD 
PREV_PREV_PREV_WORD 

NEXT_WORD 
NEXT_NEXT_WORD 

NEXT_NEXT_NEXT_WORD 
NEXT_NEXT_NEXT_NEXT_WORD 

2.3 Performance Analysis 
This section details the performance of our 
Maximum Entropy Classifier using our best 
feature set that is described in the previous 
section. We first discuss the precision, recall, 
and FB1 scores on the test set. We then pro-
vide an analysis of the successes and failures 
of our parser. We end with a discussion of 
possible improvements that could fix our 
parser's popular errors. 

2.3.1 Precision, Recall, and FB1 
Table Set 2.3.1a shows the scores produced by 
the provided nerEval script using our best fea-
ture set. Table Set 2.3.1b shows the baseline 
scores using only PREV_LABEL and WORD 
as features. As seen in the tables, we were able 
to make significant improvement in the over-
all accuracy from 83.72% to 90.57%, and in 
the overall FB1 from 40.40 to 67.38. While 
we were able to improve all entity category 
FB1 scores, the DNA and RNA entity catego-
ries saw the largest improvements with 17.56 
to 59.60 and 6.12 to 59.92 respectively. These 
categories benefitted greatly from the "previ-
ous word" and "next word" groups of features. 

 
 

Phrases Exist 7,119 
Phrases Found 6,591 
Phrases Correct 4,619 

Overall Accuracy 90.57 
 

 Preci-
sion Recall FB1 Phrase 

Count 
Overall 70.08 64.88 67.38 6,591 

DNA 66.76 53.82 59.60 1,128 

RNA 66.98 54.20 59.92 106 

Cell Line 63.78 53.03 57.91 439 

Cell 
Type 

72.22 67.18 69.60 853 

Protein 71.32 69.96 70.63 4.065 
Table Set 2.3.1a: Performance scores produced by the 

nerEval script on the standard test set with our best fea-
ture set (detailed in Table 2.2.2.3). 
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Phrases Exist 7,119 
Phrases Found 4,173 
Phrases Correct 2,281 

Overall Accuracy 83.72 
 

 Preci-
sion Recall FB1 Phrase 

Count 
Overall 54.66 32.04 40.40 4,173 

DNA 35.59 11.65 17.56 458 

RNA 9.23 4.58 6.12 65 

Cell Line 75.00 16.48 27.02 116 

Cell 
Type 

45.15 47.76 46.42 970 

Protein 61.90 38.30 47.32 2,564 
Table Set 2.3.1b: Performance scores produced by the 
nerEval script on the standard test set with the baseline 

feature set (PREV_LABEL and WORD only). 
 

To gauge the relative importance of each 
feature in our best feature set we gathered 
score data for each feature set that could be 
generated by removing one feature from the 
best feature set. Table 2.3.1 shows the change 
in scores caused by removing one feature from 
the best feature set. As highlighted in the ta-
ble, the most important of our extra features 
was the NEXT_WORD feature. Removing 
this feature caused significant drops in FB1 
scores, with the largest changes of -16 in DNA 
FB1 and -44.70 RNA FB1! 

 

 
 
 
The important of the additional "next 

word" features decreases as we move farther 
away from the current word. A similar pattern 
is seen in the "previous word" features. 
PREV_WORD is not nearly as important as 
NEXT_WORD because removing 
PREV_WORD only causes a maximum drop 
in an FB1 score of 7.43, but the other "previ-
ous word" features seem to have slightly less 
than equal importance to their respective "next 
word" feature (i.e. removing 
PREV_PREV_WORD causes slightly smaller 
drops in comparison to removing 
NEXT_NEXT_WORD). 

Another interesting result of this analysis 
is that, as highlighted in the table, on three oc-
casions removing a feature actually increases 
the score. Removing FIRST_WORD or 
PREV_PREV_WORD improves the cell line 
FB1 score while removing NUM_ON_END 
improves RNA FB1. The improvements are 
rather small and are outweighed by the up to 
5.02 FB1 decreases that occur in other catego-
ries, so the overall net performance change is 
still negative. 
 
 

 
Table 2.3.1: Change in Scores by Removing Features 

 

 Change in… 

Removed Feature Overall 
Accuracy 

Overall 
FB1 

DNA 
FB1 

RNA 
FB1 

Cell Line 
FB1 

Cell Type 
FB1 

Protein 
FB1 

COMMA -0.40 -1.40  -2.17  -0.26 -1.67  -1.39 -1.10 
DASH -0.76 -2.82  -5.30  -4.26 -5.10  -3.40 -1.95 

FIRST_CHAR_CAP -0.44 -2.45  -1.88  -0.36 -1.80  -0.99 -2.98 
FIRST_WORD -0.25 -1.01  -2.27  -1.24  0.23  -1.68 -0.58 

GREEK_CHAR_CONTAINS -0.49 -1.67  -2.34  -1.30 -2.86  -1.87 -1.33 
GREEK_CHAR_IN-
DIV_CONTAINS -0.68 -2.42  -5.27  -1.59 -3.34  -1.33 -2.08 

NEXT_NEXT_NEXT_NEXT_WORD -0.21 -0.86  -1.85  -1.00 -0.74  -1.31 -0.50 
NEXT_NEXT_NEXT_WORD -0.57 -1.82  -3.85  -3.14 -0.16  -1.48 -1.45 

NEXT_NEXT_WORD -1.17 -3.72  -5.88  -4.02 -6.63  -3.09 -2.85 
NEXT_WORD -2.51 -9.21 -16.00 -44.70 -7.74 -14.32 -5.94 
NUM_ON_END -0.62 -2.21  -2.14  0.69 -0.29  -3.38 -2.35 

PREV_PREV_PREV_WORD -0.68 -2.24  -5.27  -0.19 -2.22  -2.58 -1.47 
PREV_PREV_WORD -0.56 -2.52  -5.02  -4.17  0.11  -1.60 -2.41 

PREV_WORD -0.61 -3.96  -7.43  -7.11 -2.73  -4.36 -2.91 
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2.3.2 Successes and Failures 
In this section we explore the successes and 
failures of our Maximum Entropy Classifier. 
We present six examples that detail the ranges 
of good and bad decisions that we found in 
our classifier's output. As all of these exam-
ples show, our previous and next word sets of 
features are the strongest explanations for 
most of our correct and incorrect classifica-
tions. 

2.3.2.1 Perfect, Perfect, Perfect 
In several instances, our classifier was able to 
correctly label all words in the sentence. Ex-
ample 2.3.2.1 shows such a sentence. The sen-
tence contains both words of the DNA and 
protein categories. Our classifier successfully 
labels proteins that span single words, such as 
"AML-1B" and "OSF2." Our system is also 
able to correctly classify sequences of words 
in both the DNA and protein categories, such 
as "osteoblast-specific cis-acting element" and 
"PEBP2 alpha/AML-1 family." It is also able 
to sequences as proteins correctly where a 
filler word exists inbetween the sequence and 
the classifier correctly classifies the filler 
word as in the O category. This is seen in the 
correct classification of the word "of" near the 
end of the sentence. 

 
Example 1 

 Word Gold Label Guessed Label 
Thus O O 
this O O 

study O O 
demonstrates O O 

that O O 
AML-1B protein protein 

can O O 
increase O O 

gene O O 
expression O O 

of O O 
an O O 

osteoblast-specific DNA DNA 
gene DNA DNA 

through O O 
its O O 

binding O O 

to O O 
an O O 

osteoblast-specific DNA DNA 
cis-acting DNA DNA 
element DNA DNA 

and O O 
presents O O 
evidence O O 

that O O 
OSF2 protein protein 

is O O 
a O O 

member O O 
of O O 
the O O 

PEBP2 protein protein 
alpha/AML-1 protein protein 

family protein protein 
of O O 

transcription protein protein 
factors protein protein 

. O O 

2.3.2.2 Errors on Long Sequences 
Example 2.3.2.2 is another example in which 
we identify most labels except for a few.  The 
first error is that the word "erythropoietin" is 
labeled as other instead of as a protein. After 
examining all of the other occurances of 
"erythropoietin" in our corpus, we found that 
"erythropoietin' is labeled as protein only 
when it is followed either by "(EPO)" or "in-
duces." In some sentences, it was labeled as a 
cell type, but only when proceeded or fol-
lowed by different words. Our most important 
features aside from the base features are the 
"previous word" and "next word" sets of fea-
tures. We presume that since "erythropoietin" 
is not preceded or followed by any of these 
words to give it weight as a protein or cell 
type, we miss the target here. 

The case for "highly" and "purified" are 
similar in that we believe our classifier missed 
the labels because of the "previous word" and 
"next word" sets of features. Our best feature 
set contains the previous three words as fea-
tures as well as the next four words. The main 
identifying word that must be known in this 
case is the word "cells." The fact that the se-
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quence of words "highly purified human col-
ony forming unit-erythroid" is immediately 
followed by the word "cells" is what leads a 
human reader to determine that many of the 
words before "cells" are part of a sequence 
that define a cell type. Since our best feature 
set only includes the next four words, the la-
beling decision for "highly" and "purified" are 
not privy to the knowledge of the word "cells" 
that is nearby. Our classifier is able to cor-
rectly classify the words in the sequence as 
soon as the word "cells" becomes one of the 
"next word" features. 

Like the majority of the long cell type se-
quence, the last two labeled words in the sen-
tence, "CD34(+)" and "cells" are again labeled 
correctly because of the "CD34(+)" labeling 
decision's knowledge of the future word 
"cells" and because of the "cell" labeling deci-
sion's knowledge of the previous label being a 
cell type and the previous word being 
"CD34(+)." We experimented with removing 
all of the previous and next word features and 
saw that as a result that many of the sequences 
were not successfully labeled. 

 
Example 2.3.2.2 

Word Gold Label Guessed Label 
We O O 

examined O O 
signaling O O 

by O O 
erythropoietin protein O 

in O O 
highly cell_type O 

purified cell_type O 
human cell_type cell_type 
colony cell_type cell_type 

forming cell_type cell_type 
unit-erythroid cell_type cell_type 

cells cell_type cell_type 
generated O O 

in O O 
vitro O O 
from O O 

CD34(+) cell_type cell_type 
cells cell_type cell_type 

. O O 

2.3.2.3 Same Word Different Labels 
In these section we examine how the same 
word can have different labels depending on 
its context. Example 2.3.2.3a is a sentence 
where the word "sickle" appears as both a cell 
type and as an "other." Similar to our explana-
tion in the previous section, the correct label-
ing of "sickle" as a cell type in the first occur-
rence is primarily due to its knowledge of the 
word "cells" in the future. In the second occur-
rence, the correct label of other is given even 
though the word "cell" appears as the next 
word. We believe that the correct labeling in 
this case is because of its knowledge of the 
word "disease" immediately after "cell", 
which is a strong indicator that both the word 
"sickle" and "cell" are modifiers specifying a 
particular disease. 
 

Example 2.3.2.3a 
Word Gold Label Guessed Label 
The O O 

abnormal O O 
adherence O O 

of O O 
sickle cell_type cell_type 
red cell_type cell_type 

blood cell_type cell_type 
cells cell_type cell_type 

( O O 
SS cell_type cell_type 

RBC cell_type cell_type 
) O O 
to O O 

endothelial cell_type cell_type 
cells cell_type cell_type 
has O O 

been O O 
thought O O 

to O O 
contribute O O 

to O O 
vascular O O 
occlusion O O 

, O O 
a O O 

major O O 
cause O O 

of O O 
morbidity O O 
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in O O 
sickle O O 
cell O O 

disease O O 
( O O 

SCD O O 
). O O 

 
Example 2.3.2.3b shows another example 

where "sickle" is correctly identified as being 
in the other category. Again, like the case with 
the word "disease", the labeler's knowledge of 
"anemia" and "patients" after the word "cell" 
are probably important indicators that "sickle" 
and "cell" in this case should both be in the 
other category. 
 

Example 2.3.2.3b 
Word Gold Label Guessed Label 

In O O 
addition  O 

HU O protein 
stimulates O O 

the O O 
synthesis O O 

of O O 
fetal protein O 

hemoglobin protein O 
in O O 

sickle O O 
cell O O 

anemia O O 
patients O O 

. O O 
 

The following set of examples show the 
word "endothelial" labeled correctly as both a 
cell type and a cell line depending on the con-
text. In Example 2.3.2.3c "endothelial" is cor-
rectly labeled due to the presence of "cells" 
immediately following the word. In this ex-
ample we believe "sickle erythrocytes" is not 
labeled as a cell type because the word "with" 
is generally a separator between entities and 
ends up putting a lot of weight on the other 
category, overruling the information that 
"erythrocytes" has about the word "cells" as a 
future word. 

 

Example 2.3.2.3c 
Word Gold Label Guessed Label 
sickle cell_type O 

erythrocytes cell_type O 
with O O 

endothelial cell_type cell_type 
cells cell_type cell_type 
in O O 

 
Example 2.3.2.3d presents another exam-

ple where "endothelial" is correctly labeled as 
a cell line. In this case, we believe "endothe-
lial" is labeled as a cell "something" because 
of the word "cells" immediately following it, 
and that particular "something" is a cell line 
because of the PREV_LABEL feature. This 
example is also a great example where our 
classifier is able to correctly label a sequence 
of words that is more than five words long. In 
this case, "cultured" is such a strong indicator 
of a cell line that it does not need to know 
about all of the words in the sequence in order 
to make the proper decision. In fact, the deci-
sion that "cultured," which was propagated 
along to the other decisions by the 
PREV_LABEL feature, is probably the sole 
reason that the rest of the sequence is labeled a 
cell line instead of a cell type. 

 
Example 2.3.2.3d 

Word Gold Label Guessed Label 
cultured cell_line cell_line 
human cell_line cell_line 

umbilical cell_line cell_line 
vein cell_line cell_line 

endothelial cell_line cell_line 
cells cell_line cell_line 

( O O 
HUVEC cell_line cell_line 

)  O 
resulted O O 

 
Example 2.3.2.3e is another example 

where our classifier correctly classifies a se-
quence longer than five. In this case, the deci-
sion was easy because the words "cell line" 
are in the middle of the phrase and visible to 
all of the words in the sequence. Unfortu-



[10] 

nately, our classifier is a little overzealous and 
continues the labeling escapade by labeling 
"with" and "mutated" with cell line. 

 
Example 2.3.2.3e 

Word Gold Label Guessed Label 
transfectants O O 

of O O 
the O O 

porcine cell_line cell_line 
vascular cell_line cell_line 

endothelial cell_line cell_line 
cell cell_line cell_line 
line cell_line cell_line 

PIEC cell_line cell_line 
with O cell_line 

mutated O cell_line 
 

Example 2.3.2.3f shows an interesting ex-
ample where we label "endothelial" incor-
rectly. We have our reservations in this case in 
regards to the accuracy of the hand labeled 
"truth" answers. We feel that the phrase "en-
dothelial and RAW264.7 cells" is actually dis-
tributing both "endothelial" and "RAW264.7" 
to "cells", and thus making the meaning more 
explicit we read the phrase as "endothelial 
cells and RAW264.7 cells." Due to our inter-
pretation of the phrase's meaning, we believe 
that endothelial should not be an "other" in the 
hand labeled set and should be a cell type due 
to similarity with Example 2.3.2.3c. 

 
Example 2.3.2.3f 

Word Gold Label Guessed Label 
expression O O 

in O O 
endothelial O cell_type 

and O O 
RAW264.7 cell_line cell_line 

cells cell_line cell_line 

2.3.2.4 Previous Label Issues 
Example 2.3.2.4 shows an instance where the 
first word in a conjunction is correctly labeled 
as a protein but the second word is labeled as 
an other. We believe that this is mostly be-

cause we only include knowledge of the pre-
vious label, and thus the labeler does not know 
about TCRzeta's label when making its deci-
sion on "p56(lck)." We posit that with "previ-
ous previous label" knowledge our classifier 
would be able to correctly classify "p56(lck)" 
in this situation because the fact that 
"p56(lck)" is in a conjunction with another 
word that is a protein should increase the 
probability that "p56(lck)" is also a protein. 
We did not include more than one previous 
label as a feature because the provided infra-
structure prohibited it. 

 
Example 2.3.2.4 

Word Gold Label Guessed Label 
Diminished O O 
expression O O 

of O O 
TCRzeta protein protein 

and O O 
p56(lck) protein O 

that O O 
are O O 

2.3.3 Future Improvements 
As indicated by Example 2.3.2.4, we believe 
the most important improvement to our parser 
will come from adding additional label his-
tory, such as the "previous previous label" and 
"previous previous previous label." We did 
not find an easy way to include these features 
within the provided infrastructure, but we be-
lieve the addition of these features will in-
crease performance when labeling items in 
conjunctions or lists. 

Another possible improvement would be 
to incorporate a second pass through the sen-
tence. Example 2.3.2.2 included a long se-
quence of words that should all be labeled as a 
cell type. Our classifier missed the first two 
words "highly" and "purified." Perhaps if we 
took a second pass through the sentence and 
allowed "highly" and "purified" to have 
knowledge of the labels in front of them, then 
we would be able to correctly label the entire 
sequence. 
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3 Treebank Parsing 
We implemented a CKY parser for the tree-
bank parsing task. In this section we describe 
our parser's implementation, provide an analy-
sis of our parser's performance, and discuss 
possible improvements to the parser that 
would correct frequently occurring errors. 

3.1 Implementation 
The CKY parsing algorithm is straightforward 
and well known. In this section we will only 
describe the key optimizations used. We will 
not describe the standard implementation de-
tails such as how to follow the back points to 
generate the final parse tree. 

After generating the lexicon and grammar 
in the training phase, we create several data 
structures that we using in the CKY algorithm 
to manage nonterminals and grammar rules. 
First, we create an array ntToWord that con-
tains all of the nonterminals that are pretermi-
nal. Next, we create an array that contains all 
nonterminals, with the nonterminals from 
ntToWord being at the same index as in 
ntToWord. Additionally, we create two flat ar-
rays binaryRules and unaryRules, containing 
the binary rules and unary rules from the 
grammar. Each rule in the two arrays contains 
as the parent/children by their index into the 
array of nonterminals as well as the rule's 
score. We also create a temporary hash map 
within the training method that maps the string 
version of each nonterminal to its index in the 
array. We need this hash map because the 
provided grammar class does not reference 
nonterminals by an integer ID and instead di-
rectly uses the string representations. We use 
standard three-dimensional arrays for the 
score and back pointer data structures. 

All optimizations revolve around minimiz-
ing the number of nonterminals that we loop 
over as well as minimizing the amount of 
processing time required to iterate over a set 
of values. The algorithm has three basic sec-
tions. The first section involves looping over 
the nonterminals and placing a probability in a 

cell of the score array if the nonterminal is a 
preterminal. Naturally, instead of looping over 
all nonterminals here we only loop over the 
nonterminals in ntToWord. 

The second section involves considering 
unary rules. In the standard pseudocode, one 
iterates over all pair combinations of nonter-
minals indicated by the placeholders A and B. 
This can be unwieldy because our corpus con-
tains 3,919 nonterminals. In two layers of for 
loops this results in considering 15.4 million 
different nonterminal pairs. To sidestep this 
issue, it is important to notice that we only 
perform meaningful work if the rule AB ex-
ists in the grammar. Thus to efficiently im-
plement this section we loop over the 
unaryRules array, skipping the inner computa-
tions if the rule's score is zero or if the score 
of B in the current cell is zero. 

The third section involves three loops over 
the length of the sentence. Unfortunately, 
these three loops cannot be reduced. Inside the 
innermost loop are two sections. The second 
section is managing unary rules, which is op-
timized in the same way as described in the 
previous paragraph. The first section inside 
these loops involves iterating over all triplet 
combinations of the nonterminals indicated by 
the placeholders A, B, and C. If we were to 
naïvely implement this section as three for 
loops then we would be iterating over 60.2 bil-
lion triplets with our current dataset. 

To efficiently iterate over these triplets, we 
iterate over the binaryRules array. If B's score 
in the cell of the score array that will be used 
in the impending probability calculation is 
zero, or C's score in its respective cell is zero, 
or the rule's score is zero, then we skip imme-
diately to the next rule. Otherwise, we perform 
the calculations. 

A final, smaller optimization that we im-
plemented was from noticing that within many 
of the for loops the first two dimension indices 
used to index into the score and back pointer 
arrays are fixed. To reduce the amount of 
memory lookups, at the beginning of such sec-
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tions we index two dimensions into the arrays 
and keep pointers to the resulting one-
dimensional array. We use these pointers 
within the inner loops instead of re-indexing 
into the original arrays. This optimization was 
far less important than the others, but it re-
duced the average computation time per sen-
tence by 400 milliseconds in the case of 69-
word sentences. 

These simple but important optimizations 
enable our implementation to parse 20-word 
sentences in 125 milliseconds and 69-word 
sentences in 4.8 seconds. Table 3.1 shows the 
average processing time of our parser by sen-
tence length. The only lengths that are shown 
are lengths that exist in the provided genia test 
set. All computations were performed using 
one core of an Intel Core 2 Duo Mobile Proc-
essor T7500 running at 2.2 GHz. 

Table 3.1: Parsing Speed 
Length Average Time 

(milliseconds) 
Length Average Time 

(milliseconds) 
6 6 30 432 
7 6 31 374 
8 7 32 436 
9 13 33 634 
10 14 34 811 
11 19 35 635 
12 35 36 860 
13 31 37 676 
14 41 38 1,160 
15 48 39 1,087 
16 119 40 1,319 
17 72 41 1,165 
18 117 42 1,393 
19 165 43 1,007 
20 125 45 1,615 
21 154 46 1,433 
22 164 47 1,283 
23 190 49 1,455 
24 226 51 2,034 
25 212 54 2,206 
26 252 58 3,171 
27 288 59 3,154 
28 386 69 4,849 
29 347 

 

3.2 Performance Analysis 
In this section we state and show some exam-
ples of the parser without the chunking and 

the er-rors it leads to. In Example 3.2a, the 
only error made by the parser is to label NP as 
ADJP and NN as JJ. That is, parsing a Noun 
Phrase as an Adjective Phrase. This in turn 
leads to parsing a Noun as an Adjective. This 
is a common error that the non-chunking 
parser makes.  

 
Example 3.2a: Green indicates "Gold" tag while 

red indications our parser's tag. 
In Example 3.2b, the non-chunked version 

positions four branches of sub-trees in a dif-
ferent location and there is one labeling error 
of an NNS tag as an NN tag. A noun in plural 
form is parsed as a noun in singular form, 
which we consider a minor error. The wrong 
positioning of the subtrees is a more serious 
error. The green-colored subtree in the images 
is supposed to be positioned as a Prepositional 
Phrase (PP) under an inner Noun Phrase (NP) 
subtree whereas our parser positions it as a PP 
under an outer level NP subtree which leads to 
the outer Noun phrase now having two con-
secutive PP's. One possible way to ensure that 
this doesn't happen is to penalize the score 
when it tries to place such prepositional 
phrases one after the other. We are proposing 
this solution as we think that such consecutive 
prepositional phrases are not common in Eng-
lish. In the second case of "T and B lympho-
cytes" (the teal-colored subtree) the change in 
positioning can be attributed to the use of the 
conjunction "and." It could be that instead of 
interpreting the statement as "T lymphocytes 
and B lymphocytes" it is interpreted as "T 
AND B lymphocytes" which leads to the sepa-
ration of "B lymphocytes" as a separate Noun 
Phrase.  
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The "Gold" tree. 

 
Our parser's tree. 

Example 3.2b: Similar colored regions in each image are identical subtrees. The red NNS or NN tag shows the in-
correct tag that exists in the blue-purple subtree. 

 

In Example 3.2c, the sentence is "PU.1 is 
completely absent from peripheral T cells and 
most T cell lines based on sensitive RT-PCR 
assays." The gold parsing breaks the sentence 
into a Noun phrase and a Verb phrase. But our 
non-chunked parser is breaking this into two  

sentences connected by an "and." This can 
again be explained by following the argument 
for the previous example. This is again a 
wrong interpretation of what the "and" in the 
middle of the sentence is connected. 

 
The "Gold" tree. 

 
Our parser's tree. 

Example 3.2c: Similar colored regions in each image denote similar subtrees. 
 

 

Going on to Example 3.2d, here the errors 
are due to wrong tagging. The incorrect back 
propagation of the right sub tree as a verb 
phrase and then as a sentence instead of as a 
Preposi-tion phrase leads to the wrong inter-
pretation of a verb phrase with "rapidly" as an 
adverb as an adjective phrase with "tyrosine-
phosphorylated" as an adjective phrase. 

 

Example 3.2d: Green = "Gold" tag, red = parser's tag. 

 
In Example 3.2e, at the start of the bottom-

up parsing, the part of the sentence "a subfam-
ily of the Ets Family of DNA-binding pro-
teins" is where the wrong positioning of sub 
trees hap-pens. The rest of the sentence is 
parsed correctly. So, instead of tagging the 
sentence as "a sub-family of the Ets family of 
DNA-binding proteins" our parser is tagging it 
as "a subfamily of the Ets family of DNA-
binding proteins." Thus the wrong positioning 
of the trees due to con-fusion about which 
preposition combines which part of the sen-
tence. 
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The "Gold" tree. 

 
Our parser's tree. 

Example 3.2e: Similar colored regions in each image denote similar subtrees. 
 

Example 3.2f is again of wrong position-
ing of a sub tree. The verb "expressed" in the 
sentence should apply to the prepositional 
phrase "during development" whereas our 
parser com-bines it with the noun phrase "B 
cells and T cells." This leads to the assump-
tion that the adverb "exclusively" applies to  
 

 
the prepositional phrase "in B cells and T cells 
during development." There are many exam-
ples in which our parser does create the entire 
structure correctly but we are not presenting 
that here. These exact matches, as described in 
Table 3.3a, are up to 33% of the test sen-
tences. 

 

 
The "Gold" tree. 

 
Our parser's tree. 

Example 3.2f: Similar colored regions in each image denote identical subtrees. 
 

3.3 Improvements 
We implemented second order vertical mark-
ovization to improve our parser's performance. 
Our implementation of vertical markovization 
allows a number to be passed by command 
line to the program that specifies the order of 
vertical markovization to use. We experi-
mented with different orders of vertical mark-
ovization to see the effect on the F1 score for 
the test set. Table 3.3a shows the average 
score for several orders of vertical markoviza-
tion for all sentences in the test set with no 
more than twenty words in the sentence while 
Table 3.3b shows the average score using the 

entire test set, which includes sentences up to 
length 69. We also include the total processing 
time for the respective test set. 

As seen in Table 3.3a, the sweet spot 
given our current training set is a third order 
vertical markovization, which provides a 
slight improvement over second order. High 
orders decrease performance in comparison 
with the third order because of the increasing 
sparseness due to a fixed training set size. If 
we were to use additional data, third order im-
provement over second order would probably 
be larger and we might even find additional 
improvement by moving to fourth order. One 
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important note is that while sixth order per-
forms worse than third order, it still has higher 
scores in comparison to first order. 

Another interesting feature of this data is 
that third order vertical markovization requires 
three times the processing time of order one, 
while order four requires five times that of or-
der one and order five requires almost eight 
times that of order one. This increase in proc-

essing time is mostly due to increasing the 
amount of nonterminals and thus increasing 
the amount distinct rules that exist in the 
grammar. The only slight increase in process-
ing time from order five to order six is pre-
sumably because our training set contains few 
sentences with a tree depth larger than five. 

 

 
 

Table 3.3a: Average Scores on All Sentences with Twenty Words or Less 
Order Precision Recall F1 Exact Match (%) Test Set Processing Time (seconds) 

1 76.84 73.94 75.36  9.26 4 
2 84.44 83.52 83.98 33.33 6 
3 84.41 84.14 84.28 33.33 12 
4 81.72 82.10 81.91 29.63 20 
5 80.90 81.79 81.34 25.93 31 
6 79.47 79.59 79.53 22.22 33 

 
 

Table 3.3b: Average Scores on All Sentences from the Test Set 
Order Precision Recall F1 Exact Match (%) Test Set Processing Time (seconds) 

1 71.35 66.63 68.91 3.90 66 
2 77.34 76.59 76.96 16.88 123 
3 77.38 77.08 77.23 16.23 211 
4 75.37 75.62 75.49 14.29 325 

 
 

Table 3.3b shows similar trends when test-
ing on the entire test set, which contains sen-
tences of up to length 69. We only include up 
to order four in the table because the higher 
orders required more memory than the 2.7 GB 
that we were allocating to the process. Again, 
third order vertical markovization scores the 
best (again only slightly better than order 
two), but the cost of almost twice the compu-
tation time over second order is magnified by 
the larger test set. In terms of computation 
time, it is clear that one gets the most per-
formance for the dollar with order two vertical 
markovization. 

In Section 3.2 we saw that labeling a noun 
as an adjective, and singular/plural noun mix-
ups were common. We believe that additional 
training data would significantly help in these 

cases because the errors are probably because 
the words were never seen or infrequently 
seen in the training set. 

Another problem we saw as incorrect posi-
tioning of subtrees due to misinterpreting the 
phrases and their positions in the sentence. 
These types of errors fall into two categories: 
grammar rule violations and sentence interpre-
tation dependence. The grammar rule viola-
tion errors can be avoided by using additional 
training data that would result in strong prob-
abilities that give "penalties" to grammar vio-
lations. The sentence interpretation issues are 
more difficult to solve, but could definitely 
benefit from some type of shallow semantics 
processing. 
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4 NER/Parser Combination 
This section deals with the performance re-
sults after the NER and the parser are com-
bined. We compare the results we obtain with 
the non-chunked versions to see how much of 
an improvement we receive from chunking. In 
Example 4a, the non-chunked version has the 
error of positioning stuff at the wrong place. It 
combines parts of three phrases to form one 
phrase, "by", "binding", "to" and putting them 
as part of a prepositional phrase and breaking 
up a noun phrase "high affinity receptors" by 
forming a "Unlike Coordinated Phrase" with 
an adjective. As we see in the chunked ver-
sion, one of the two errors is corrected due to 
the chunking part. The "high affinity recep-
tors" gets put back into one phrase and the 
UCP is no longer created. But the other error 

with relation to "by binding to" is still made. 
This can be considered as an example to show 
that chunking does make things a little better. 

In Example 4b, the non-chunked version 
again exhibits both errors, wrong labeling of 
tags and wrong positioning of a few sub trees. 
The non-chunked version wrongly labels 
"resting" as an adjective, which leads to the 
combining of "not in memory" as an adverb 
phrase and further on combined with "resting" 
to become an adjective phrase. This wrong la-
beling leads to most of the wrong combina-
tion. When you look at the chunked version, 
even though one of the errors of labeling "rest-
ing" as an adjective is rectified, it still does not 
get the sub trees right. A major part of the 
right tree is combined with the left subtree 
leaving an even worse version of the non-
chunked tree. 

 
 
 

 
The "Gold" tree. 

 
Our parser's tree without chunking. 

 

 
Our parser's tree with chunking. 

 
Example 4a: Similar colored regions in each image denote identical subtrees. 
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The "Gold" tree.  

Our parser's tree without chunking. 
 

 
Our parser's tree with chunking. 

 
Example 4b: The colored region is the region that remains fairly constant. 

 
 

We had dealt with the non-chunked and 
gold versions of Example 4c as Example 3.2f. 
Now, if we compare the non-chunked and 
chunked version, we can see that it still inter-
prets it in a wrong way. The verb "expressed" 
is applied to a prepositional phrase; it is ap-
plied to more than just the phrase it is sup-
posed to apply to. The prepositional phrase 
"exclusively in B cells and T cells" should be 
interpreted as the "AND" connector between 
B cells and T cells, but the chunked parser in-
terprets it as an "AND" connector between 
"exclusively in B_cells and T_cells during de-
velopment". Thus though it avoids one error, 
it brings in a different kind of error. This ex-
ample stands for cases where the chunked 
parser slightly worsens the result because of 
chunking. 

 

 
Example 4c: Our parser's tree with chunking. The col-
ored region is the region that changes in relation to the 

unchunked version from Example 3.2f. 
 

Example 4d continues from Example 3.2e, 
the non-chunked version made the error of 
misinterpreting the purpose of the "of" prepo-
sition and thus instead of tagging the sentence 
as "a subfamily of the Ets family of DNA-
binding proteins" our parser is tagging it as "a 
subfamily of the Ets family of DNA-binding 
proteins." In the chunking version, it does not 
do this and instead perfectly follows the cor-
rect structure and also identifies the correct la-
bels. This is an example to show that adding 
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the chunking part actually helps avoid the er-
rors in the non-chunking parser. 

 

 
Example 4d: Our parser's tree with chunking. The parse 

is a perfect match to the Gold version from Example 
3.2e. 

 
In Example 4e, we show a case where the 

non-chunking parser does not make any mis-
takes but the chunked parser makes an error in 
interpreting the preposition usage. Notice that 
the gold and non-chunked versions are similar 
(including the labels). In the chunked version, 
the sentence is interpreted as "the suppressor 
function in CEM_C1_cells by dexa-

methasone" instead of "the suppressor func-
tion in CEM C1 cells by dexamethasone." 

Thus it can be seen that we cannot really 
say whether chunking helps or not even when 
we do an in-depth analysis by comparison. In 
some cases it seems to help, in others it seems 
to worsen, and in some it seems neutral. 

5 Member Contributions 
Todd and Pavani pair programmed the major-
ity of the assignment. Todd individually cre-
ated the hill climbing feature selection for the 
Maximum Entropy Classifier, conceived and 
implemented all optimizations, and developed 
most maximum entropy classifier features. 
Pavani individually selected the performance 
analysis examples. Todd and Pavani collec-
tively wrote the report, discussed the exam-
ples/performance analysis, and created the tree 
visualizations. Todd wrote all sections of the 
report except the sections with examples. 

 
 

 
The "Gold" tree and our parser's tree without chunking. 

 
Our parser's tree with chunking. 

 
Example 4e: Similar colored regions in each image denote similar subtrees. 

 


