
CS 224N / Ling 280

Assignment 3: MaxEnt Sequence Classifiers & Treebank Parsing

Due Wed, 14 May 2008, 5pm

0 Overview

This assignment looks at named entity recognition and parsing. The aim is to examine whether
pre-chunking of named entities can improve the performance of a statistical parser trained on a
single or hybrid biomedical corpus when applied to the task of parsing another set of biomedical
research articles. You will build a maximum entropy classifier, which will be incorporated into
a maximum entropy Markov model for doing named entity recognition on biomedical text. You
will also implement the parsing algorithm for a broad coverage statistical treebank parser. We
have included in the support code the ability to chunk entities into a single word, and then to pass
this chunked sentence to the parser, so that you can then informally compare the performance
of the parser on chunked and unchunked input.

1 Setup

We’ve put everything for both portions of this assigment (both Java starter code and data files)
in the directory /afs/ir/class/cs224n/pa3/. The Java starter code is in pa3/java/, and the
data is in pa3/data/. Copy the starter code to your local directory, and make sure you can
compile it. Spend some time looking through the principal source files for this assignment. For
the maximum entropy portion, these are:

src/cs224n/assignments/MaximumEntropyClassifierTester.java

You can do a quick test run for the first one using the command

java cs224n.assignments.MaximumEntropyClassifierTester -mini

For the parsing portion, the principal file is:

java/src/cs224n/assignments/PCFGParserTester.java

Make sure you can run the main method of the PCFGParserTester class. You can either run it
from the data directory, or pass that directory in as the -path value. Use the -data value to
specify which dataset to use. Running:

java -server -mx500m cs224n.assignments.PCFGParserTester
-path /afs/ir/class/cs224n/pa3/data/ -data miniTest
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will train and test your parser on a few sentences from a toy grammar. Running:

java -server -mx500m cs224n.assignments.PCFGParserTester
-path /afs/ir/class/cs224n/pa3/data/ -data genia

or,

java -server -mx500m cs224n.assignments.PCFGParserTester
-path /afs/ir/class/cs224n/pa3/data/ -data bioie

will train and test your parser on data from the GENIA or BioIE datasets, respectively. GENIA
is about 4,000 sentences while BioIE is around 6,000. Training on a combination of both datasets
simultaneously is possible with the -data combo flag.

2 A Maximum Entropy Markov Model (MEMM)

The backbone of a maximum entropy Markov model (MEMM) is the maximum entropy classifier,
which you will be responsible for building. As you learned in class, an MEMM is trained in
exactly the same way as a regular maximum entropy model, where each word corresponds to one
datum, and the correct label for the previous word can be used in features for the current word.
The primary difference comes at test time, when a Viterbi decoder (which we have provided)
must be used to find the best possible sequence of labels, instead of greedily finding the best
label at each point.

2.1 Building a simple maxent classifier

Look through the code in MaximumEntropyClassifierTester.java. This class contains several
subclasses. The most important two are:

MaximumEntropyClassifier (implements classify.ProbabilisticClassifier)
MaximumEntropyClassifierFactory (creates the former)

Look at the main method to see the overall program flow. There are two modes you can run this
main method in. If you supply -mini as the first command line argument, you’ll get a miniature
classification problem from the miniTest() method. I recommend working with this branch
first, since it’s easier to debug. miniTest() creates several training datums and a test datum.
Each datum represents either a cat or a bear and has several features (which are just strings).
The training data are passed to a MaximumEntropyClassifierFactory which uses them to learn
a MaximumEntropyClassifer. This classifier is then applied to the test data, and an accuracy
(and distribution over labels) is printed out.

While the starter code contains a fully-functioning pipeline for training and testing a classifier,
the classifier it builds is as dumb as a rock, and does not use maximum entropy. Your job is
to turn the placeholder code into a maximum entropy classifier by filling in the three chunks of
code marked by “// TODO” lines . First, look at

MaximumEntropyClassifier.getLogProbabilities()

This method takes a datum, and produces the (log) distribution, according to the model, over
the possible labels for the datum. There will be some interface shock here, because you’re looking
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at a method buried deep inside the implementation of the rest of the classifier. You are given
several arguments, whose classes are defined in this same Java file:

EncodedDatum datum
Encoding<F, L> encoding
IndexLinearizer indexLinearizer
double[] weights

The EncodedDatum represents the input datum. It is a sparse encoding, which tells you which
features were present in that datum, and with what counts. When you ask an EncodedDatum
what features are present, it will return feature indexes instead of feature objects — for example
it might tell you that feature 121 is present with count 1.0 and feature 3317 is present with
count 2.0. If you want to recover the original (String) representation of those features, you’ll
have to go through the Encoding, which maps between features and feature indexes. Encodings
also manage maps between labels and label indexes. So while your miniTest() labels are “cat”
and “bear”, the Encoding will map these to indexes 0 and 1, and your returned log distribution
should be a double array indexed by 0 and 1, rather than a hash on “cat” and “bear”.

So, you first have a feature (“fuzzy”) and a label (“cat”) which map to some feature index (say
2) and some label index (say 0). As outlined above, these are managed by the Encoding. The
job of the getLogProbabilities() method is to return an array of doubles, where the indexes
are the label indexes, and the entries are the log probabilities of that label, given the current
datum. To do this, you will need to properly combine the feature weights (the λs). The double
vector weights contains these feature weights linearized into a one-dimensional array. To find
the weight for the feature “fuzzy” and the label “cat,” you’ll need to take their indexes (2 and
0) and use the IndexLinearizer to find out what index in weights to use.

Your job here is to correctly fill in and return an array of log probabilities. Try to do this as
efficiently as possible — this is the inner loop of the classifier training. Indeed, the reason for all
this primitive-type array machinery is to minimize the amount of time it’ll take to train large
maxent classifiers.

(Here’s a tip: you will likely find that your code spends much of its time taking logs and exps.
You can often avoid a good amount of this work using the logAdd(x, y) and logAdd(x[])
functions in math.SloppyMath.)

Run miniTest() again. Now that it’s actually voting properly, you won’t get a 0/1 distribution
anymore — you’ll get 50/50, because, while it is voting now, the weights are all zero. The next
step is to fill in the weight estimation code. Look at

Pair<Double, double[]> calculate(double[] x)

buried all the way in

MaximumEntropyClassifierFactory.MaximumEntropyClassifier.ObjectiveFunction

This method takes a vector x, which is some proposed weight vector, and calculates the value
of the objective function we’re trying to optimize in training, along with its derivatives. Our
objective function is the negative conditional log likelihood of the training data 〈C,D〉:

F (~λ) = −1 ·

 ∑
〈c,d〉∈〈C,D〉

log p(c | d,~λ)


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p(c | d,~λ) =
exp [

∑
i λifi(c, d)]∑

c′ exp [
∑
i λifi(c′, d)]

(Note that the is here correspond to the indexes generated by the IndexLinearizer.) The
derivatives of the log likelihood are therefore:

∂F (~λ)
∂λi

= −1 ·

 ∑
〈c,d〉∈〈C,D〉

fi(c, d)

−
 ∑
〈c,d〉∈〈C,D〉

∑
c′

p(c′ | d,~λ)fi(c′, d)


Recall that the left summation is the number of times the feature i actually occurs in examples
with true class c in the training, while the right sum is the expectation of the same quantity
using the label distributions the model predicts.

The current code just says that the objective is 42 and the derivatives are flat. Note that you
don’t have to guess at x — that’s the job of the optimization code. All you have to do in the
calculate() method is evaluate proposed x vectors. You have available as method arguments
the data, the string-to-index encoding, and the linearizer we discussed before:

EncodedDatum[] data;
Encoding encoding;
IndexLinearizer indexLinearizer;

Write code to calculate the objective function and its derivatives, and return the Pair of those
two quantities.

Now run miniTest() again. This time, the optimization should find a good solution, one that
puts all of the mass onto the correct answer “cat.”

Almost done! Remember that putting probability 1.0 on “cat” is probably the wrong behavior
here. To smooth, or regularize, our model, we’re going to modify the objective function to
penalize large weights. In the calculate() method, you should now add code which modifies
the objective function as follows:

G(~λ) = F (~λ) +
∑
i

λ2
i

2σ2

The derivatives change correspondingly:

∂G(~λ)
∂λi

=
∂F (~λ)
∂λi

+
λi
σ2

Run miniTest() one last time. You should now get less than 1.0 on “cat” (0.73 with the default
sigma).

2.2 Feature engineering for a maxent classifier

You will be doing named entity recognition on biomedical data, and the task is to identify the
following types of entities: cell line, cell type, DNA, RNA, and protein. Don’t worry if you
don’t know much (or anything) about biology, you’ll find that it really shouldn’t matter. We
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have also included newswire data from the MUC shared task, which contains entities of the
types PERSON, LOCATION, ORGANIZATION, MONEY, PERCENT, DATE, and TIME. You are absolutely
not required to feature engineer for the newswire data, or even run your system on it, we have
merely included it for those who are interested and feel like playing around with it.

Now that your classifier works, goodbye miniTest()! Run the main method with a single
argument of

/afs/ir/class/cs224n/pa3/data/ner/genia

or wherever you may have copied the data. It now loads the named entity recognition data
from the data directory and converts each data instance into a list of String features (replacing
genia with muc7 will train on a corpus of newswire data instead). Currently, it adds only two
features: one for the current word and one for the pervious label. This should train relatively
quickly (around a few minutes). It will print output to standard out, using a very similar format
to the imput data. There will be one word per line, with three columns. The first column will
contain the word, the second column the correct answer, and the third column will contain the
answer guessed by the model. We have provided a script for computing the per-entity F-score.
This script is located at /afs/ir/class/cs224n/pa3/bin/nerEval. The model you just built
won’t work well - that’s where you come in!

Your job here is to flesh out the feature extraction code in

MaximumEntropyClassifierTester.extractFeatures(List<String> sentence, int
position, String prevLabel)

This List<String> sentence contains all words in the sentence, the int position tells you the
position in the sentence over which you should build your features, and the String prevLabel
tells you the label of the previous word in the sentence. There are lots of features you can add
here - this is your chance to really get creative, and use the error analysis skills you’ve been
building all quarter. You can add orthographic features, such as whether the word starts with
a capital letter, or contains a number, or any hyphenation. You can use regular expressions
to check if the word contains a spelled out greek letter. You can also use feature conjuctions,
such as whether the word is capitalized AND the previous label. Go crazy, and try all sorts of
stuff. One thing to be aware of though is sparseness - pairs of words, such as current word AND
previous word, are all well and good, but they won’t occur all that often and you will have a lot
of them. Try to think of features which will get activated with some frequency.

3 Building A PCFG Parser

In this portion of the project, you will build a broad-coverage probabilistic parser. You’re free
to build a beam-decoded shift-reduce parser, or implement any other general (P)CFG parsing
solution you find interesting and manageable. However, the bulk of the support code assumes
that you will be building a parser where the grammar rules have been pre-transformed into
exclusively unary and binary grammar rules. The easiest thing to build would be a probabilisitic
generalized CKY parser. Another good thing to attempt to build is an agenda-driven PCFG
parser.

At the beginning of the main method in PCFGParserTester some training and test trees are
read in. Currently, the training trees are used to construct a BaselineParser that implements
the Parser interface (which only has one method: getBestParse()). The parser is then used
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to predict trees for the sentences in the test set. For each test sentence the parse given by
your parser is evaluated by comparing the constituents it generates with the constituents in the
hand-parsed version. From this, precision, recall, and the F1 score are calculated.

This baseline parser is really quite poor—it takes a sentence, tags each word with its most likely
tag (i.e., a unigram tagger), then looks for occurrences of the tag sequence in the training set. If
it finds an exact match, it answers with the training parse of the matching training sentence. If
no match is found, it constructs a right-branching tree, with nodes’ labels chosen independently,
conditioned only on the length of the span of a node. If this sounds like a strange (and terrible)
way to parse, it should, and you’re going to provide a better solution.

You should familiarize yourself with these basic classes:

ling.Tree CFG tree structures (pretty-print with
ling.Trees.PennTreeRenderer)

Lexicon Pre-terminal productions and probabilities

Grammar, UnaryRule, BinaryRule CFG rules and accessors

(For those wondering about ling.Trees.PennTreeRenderer, we will not be reading in Penn
Treebank data but this Renderer is a good format for displaying any trees, the GENIA and BioIE
included.) Tree is a linguistic tree class that you will use no matter what kind of parser you
implement. Lexicon in a minimal lexicon, but it handles rare and unknown words adequately
for the present purposes. You can use it to determine the pre-terminal productions for your
parser if you like. Grammar is a class you can use to learn a PCFG from the training trees. Since
the training set is hand-parsed this learning is very easy. We simply set

P̂ (N j → ζ) =
C(N j → ζ)∑
γ C(N j → γ)

where C(N j → γ) is the count observed for that production in the data set. While you
could consider smoothing rule rewrite probabilities, it is sufficient for this assignment to just
work with unsmoothed MLE probabilities for rules. (Doing anything else makes things rather
more complex and slow, since every rewrite will have a nonzero probability, so you should defi-
nitely get things working with an unsmoothed grammar before considering adding smoothing!)
UnaryRule, BinaryRule are simply the classes the grammar uses to store these learned pro-
ductions. They each bear the frequency estimated probabilities from the training set.

(If you build an agenda-driven PCFG parser, you will also find util.PriorityQueue useful. It
is a fast priority queue implementation, but it does not support a promotion / increasePriority
operation. If you want to increase the priority of an edge in the queue, you need to add that
edge a second time, with the new higher priority, and be aware that whenever you pop an edge
off of the queue, it might be a duplicate “dead” edge. We made this design decision because, in
our experience, highly-tuned agenda-driven parsers spend a large fraction of their time dealing
with the overhead that queues supporting promotion incur. But you are of course welcome to
change the priority queue if you’d really like it to support promotion.)

Although it is not required, we strongly recommend that you get your parser working on the
miniTest dataset before you attempt the treebank dataset. The miniTest data set consists of
3 training setences and 1 test sentence from a toy grammar. There are just enough productions
in the training set for the test sentence to have an ambiguity due to PP-attachment. There are
unary, binary, and ternary grammar rules in in training sentences.

As we discussed in class, most parsers require grammars in which the rules are at most binary
branching. You can binarize and unbinarize trees using the TreeAnnotations class. The imple-
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mentation we give you binarizes the trees in a way that doesn’t generalize the grammar at all.
You should run some trees through the binarization process to get the idea of what’s going on.
If you annotate/binarize the training trees, you should be able to construct a Grammar out of
them using the constructor provided.

Your first job is to build a parser using this grammar. For the miniTest dataset your parser
should match the given parse of the test sentence exactly. Once you’ve got this working you can
move on to the genia, bioie, or ultimately combo datasets.

Scan through a few of the training trees in the genia or bioie dataset to get a sense of the
range of inputs. Something you’ll notice is that the grammar has relatively few non-terminal
symbols (27 plus part-of-speech tags) but thousands of rules, many ternary-branching or longer.
Currently there are 500 GENIA files and 642 BioIE files, and the defaults settings are roughly
to use 90% of each as training data with the remaining 10% split between a validation and a
test set. (You can look in the data directory if you’re curious about the native format of these
files.) At the moment, only the training and test set are used, but you are welcome to use the
validation set too if you see a use for it. The static integer MAX LENGTH determines the maximum
length of sentences to test on (it does not affect the training set). You can lower MAX LENGTH for
preliminary experiments, but your final parser should work on sentences of at least length 20 in
a reasonable time (5 seconds per 20-word sentence is achievable with some optimization).

Once you have a parser working on the treebanks, your next task is improve upon the supplied
grammar by adding 2nd-order vertical markovization. This means using parent annotation
symbols like NP^S to indicate a subject noun phrase instead of just NP. You can test your new
grammar on the miniTest data set if you want, though the results won’t be very interesting.
When you test it on the treebank the results should be pretty impressive: a 3–4% improvement
over the a parser using the original grammar.

At this point an F1 performance of 80% is probably achievable (but don’t worry too much about
this exact figure—it’s just a ballpark).

3.1 Coding Tips

Whenever you run the java VM, you should invoke it with as much memory as you need, and in
server mode:

java -server -mx500m package.ClassName

On many machines, you’ll get much faster performance than just running with no options.

If your parser is running very slowly, run the VM with the -Xprof command line option. This
will result in a flat profile being output after your process completes. If you see that your
program is spending a lot of time in hash map, hash code, or equals methods, you might be
able to speed up your computation substantially by backing your sets, maps, and counters with
IdentityHashMap instead of HashMap. This requires the use of something like an Interner for
canonicalization. Ask around if you’re not sure what that would entail, some people in the class
already know this trick.

4 Combining NER and Parsing

Luckily for you, this last section requires no coding because the glue for plugging the two systems
together is provided. Your parser was trained on possible two sets of biomedichal data but will
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be tested on a third of an additional 500 sentences. In this portion of the assignment, you are
to test your parser on this data and then examine the output. You will need to specify on the
command line where the new test data is located:

java -server -mx500m cs224n.assignments.PCFGParserTester
-path /afs/ir/class/cs224n/pa3/data/ -data {genia|bioie|combo} -testData gtb

You should then run the system again, but where the entities in the biomedical data are first
chunked together into single words. You will do this by running the parser with an additional
command line arguments which tells it where the NER training data is:

java -server -mx500m cs224n.assignments.PCFGParserTester
-path /afs/ir/class/cs224n/pa3/data/ -data {genia|bioie|combo} -testData gtb
-nerTrainFile /afs/ir/class/cs224n/pa3/data/ner/genia

It will then train your NER system after it trains the parser, and use that NER model for
chunking. Do not pay attention to the scores that the parser gives you on this data,
as they will be meaningless on account of the fact that the actual words in the sentence are now
different than those in the gold-standard tree. Your task here is to examine both sets of outputs,
and see what types of errors the chunking fixes, what types it introduces, and generally how it
affects the output.

5 The Requirements

For the MEMM portion, the following is expected:

• A correct implementation of a maxent classifier.

• A well-designed set of feature templates for biomedical entity classification.

• Describe the feature templates you used, and also how good and effective they are for the
classification problem.

For the parsing portion, the following is expected:

• A PCFG parser, probably a CKY parser or an agenda-driven parser, that can parse sen-
tences of at least length 20 in a reasonable amount of time (definitely under a minute!).

• An improved grammar with 2nd order vertical markovization.

And, finally, for the combination portion:

• Error analysis and an intelligent discussion of ways in which pre-chunking with NER im-
proves or hurts the performance of the parser on biomedical text

Anything beyond this is optional.

6 Write-up

For the write-up, you should describe what you built, what choices you had to make, why you
made the choices you did, how well they worked out, and what you might do to improve things
further. In particular, for the maximum entropy model:
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• In your implementation of the maxent model code, we’ll be looking first for correctness,
and secondarily for efficiency.

• For the named entity recogntion model, an important criterion will be coming up with
good and effective features for this task. Describe the feature templates you used, why you
choose them, and how well they worked.

• Make sure you describe any data analysis and testing you did as part of finding good
features, and show any revealing data analysis on your final results which shows what it is
good and bad at.

For the parser model:

• A brief description of your implementation including any important design decisions you
made.

• An evaluation of successes and failures of your parser. You don’t have to do a detailed data
analysis, but you should give a few examples to illustrate any errors your parser makes
often and describe its performance in general.

• A discussion of further improvements you might make to deal with some of the observed
errors.

• An explanation of any extensions you implemented and an analysis of whether or not they
improved performance.

And finally, for the NER/parser combination:

• A clear analysis with examples to illustrate how the performance changes.

7 Submitting the assignment

7.1 The program: electronic submission

You will submit your program code using a Unix script that we’ve prepared. To submit your
program, first put all the files to be submitted in one directory on a Leland machine (or any
machine from which you can access the Leland AFS filesystem). This should include all source
code files, but should not include compiled class files or large data files. Normally, your submis-
sion directory will have a subdirectory named src which contains all your source code. When
you’re ready to submit, type:

/afs/ir/class/cs224n/bin/submit-pa3

This will (recursively) copy everything in your submission directory into the official submission
directory for the class. If you need to resubmit it type

/afs/ir/class/cs224n/bin/submit-pa3 -replace
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We will compile and run your program on the Leland systems, using ant and our standard
build.xml to compile, and using java to run. So, please make sure your program compiles and
runs without difficulty on the Leland machines. If there’s anything special we need to know
about compiling or running your program, please include a README file with your submission.
Your code doesn’t have to be beautiful but we should be able to scan it and figure out what you
did without too much pain.

7.2 The report: turn in a hard copy

You should turn in a write-up of the work you’ve done, as well as the code. Your write-up
must be submitted as a hard copy. There is no set length for write-ups, but a ballpark
length might be 6 pages, including your evaluation results, a graph or two, and some interesting
examples. They are to be turned in to a box outside of Professor Manning’s office.
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