
[1]

CS 276 Programming Assignment 1:

K-Gram Spelling Correction and Lucene

Todd Sullivan
todd.sullivan@cs.stanford.edu

Ashutosh Kulkarni
ashuvk@stanford.edu

1 Introduction
In this project we developed multiple spelling
correctors using the Jaccard score of k-gram
overlap, Levenshtein edit distance, and word
frequency for ranking and tie breaking be-
tween possible spelling corrections. After a
thorough analysis of our spelling corrector’s
tuning parameters, we determined the best
overall spelling corrector to use k-grams with
2 characters and to include the first character
and last character of the word as special k-
grams. A layered ranking algorithm that first
generates a list of words based on Jaccard k-
gram overlap, and then re-ranks the list based
on Levenshtein edit distance worked best.

We also explored using Lucene for search
and experimented with using Lucene’s built-in
spelling corrector as well as incorporating our
best spelling corrector.

2 Spelling Correction

2.1 General Implementation
All of our spelling correctors can be confi-
gured by specifying four different parameters:
K, SE, TB, and CS. These parameters are
summarized in Table 2.1. SE is perhaps ea-
siest described with an example. Consider the
word “cow”. If K = 3 and SE = 3 then the only
k-gram is “cow”. If SE = 2, then there are two
additional k-grams of “$co” and “ow$”, where
$ is a special boundary symbol. If SE = 1 then
there are two more additional k-grams of
“$$c” and “w$$”. These parameters allow us
to easily create and test a range of spelling
correctors.

Our spelling correctors contain a few more
niceties aside from the power and convenience
obtained through these four parameters.
Through the indexFile() method one can in-
crementally build up the inverted index. Our
implementation is also fairly fast. Most of our
spelling correctors can spell correct the entire
test set in one to three seconds with only
around three to five seconds for building the
provided "big.txt.gz" file's index.

Table 2.1: Spelling Correction Parameters
Parameter Description

K K-gram size to use.

SE Smallest extra k-gram to use from either
end of the word.

TB Whether or not to use a tie breaking me-
thod such as word frequencies.

CS Size of returned corrections list.

2.2 K-Gram Spelling Correction
without Tie Breaking

Table 2.2 displays the best scoring parameters
for our most basic spelling corrector, which
only uses the Jaccard score of k-gram overlap
with no tie breaking mechanism. Since the
spelling corrector only uses k-gram overlap,
the CS parameter has no effect on the score.
This is because the top scoring spelling cor-
rection will always be at the front of the list.

To determine the best parameters, we va-
ried K from two to ten and varied SE from one
to K for each K. An interesting note is that all
spelling correctors with SE = 1 scored better
than spelling correctors with SE = 2, which
scored better than spelling correctors with SE
= 3, and so on. This suggests that the k-grams
that can be formed with at least one $ marker

[2]

(from the front or back of the word) are con-
sistently more important than the other k-
grams and that the most benefit is realized
from using all of these k-grams with $ mark-
ers.

Table 2.2: Best KGramSpellingCorrector
Parameters with TB = false, CS irrelevant

K SE Spellings Correct
(out of 270)

Time
(ms)

2 1 188 1,766
4 1 187 727
3 1 187 786
5 1 186 785
6 1 185 788

2.2.1 Sample Performance Cases
Table 2.2.1 contains output from our

KGramSpellingCorrector with K = 2, SE = 1,
TB = false, and CS = 10, showing three inter-
esting cases encountered in the test set. In the
first case, the word “hierchy” is successfully
changed to “hierarchy” mostly because the da-
taset used to create the k-gram index did not
contain any word close to “hierarchy” except
for “hierarchy” itself.

In the second case, “concider” is incorrect-
ly changed to “cider” when the answer is
clearly “consider”. This case would easily be
solved by applying Levenshtein edit distance
to the top 10 list since “cider” is very far away
from “concider” while “consider” involves
swapping only one letter. The problem could
also possibly be solved by blending the word
frequency with the k-gram overlap score since
“consider” has a much larger word frequency
in comparison to “cider” and their k-gram
overlap scores are relatively close.

In the third case, our spelling corrector in-
correctly chose “files” instead of “fails”. In
this case both “files” and “fails” have the
same k-gram overlap score but they have dif-
ferent word frequencies. The correct answer
could be obtained in this case through a tie-
breaking mechanism that chooses the word
with the largest word frequency in the text that
was indexed.

Table 2.2.1: KGramSpellingCorrector Output
K = 2, SE = 1, TB = false, CS = 10

hierchy => hierarchy

Correction Jaccard Score Word
Frequency

hierarchy 0.800 4
kerchief 0.417 11
handkerchief 0.400 56
kerchiefs 0.385 1
handkerchiefs 0.375 6
archie 0.364 2
thierry 0.333 3
chiefly 0.333 134
anarchy 0.333 7
archery 0.333 1

concider => consider

Correction Jaccard Score Word
Frequency

cider 0.667 1
consider 0.636 98
coincide 0.5 5
considers 0.462 10
coincided 0.462 4
coincides 0.462 4
colder 0.455 2
confer 0.455 14
cinder 0.455 1
concur 0.455 3

failes => fails

Correction Jaccard Score Word
Frequency

files 0.625 8
fails 0.625 20
failures 0.6 5
failed 0.556 63
faites 0.556 1
faithless 0.546 1
fail 0.5 40
fairies 0.5 1
tailless 0.455 1
fairness 0.455 4

[3]

2.3 Incorporating Levenshtein Edit
Distance

One of the areas for improvement identified in
the output of our first spelling corrector is the
use of Levenshtein edit distance to rescore the
original k-gram spelling corrector's output. To
do this, we simply create a wrapping class that
first retrieves the top CS candidates from our
first spelling corrector and then reorders the
list based on each word's Levenshtein edit dis-
tance with the word we are considering spel-
ling corrections for.

2.3.1 Best Parameters
Table 2.3.1 shows the top 5 parameter sets

for this new spelling corrector. We evaluated
the spelling corrector with the same range of
K and SE values as the previous corrector.
Since this new spelling corrector involves res-
coring all words in the list, the size of the list
has an effect on performance. This is because
a smaller list may not include a word that has,
say, an edit distance of one while expanding
the list could reveal such a word. Thus we also
varied the CS parameter from 5 to 60 in in-
crements of 5. In the table, we are allowing
only the best scoring k/SE combination. For
example, K = 2 and SE = 1 also gets a score of
200 when CS = 10, but we omit this since the
k/SE combination has higher score elsewhere.

We see that K = 2 and K = 3 perform well
again, as well as SE = 1 and SE = 2. When
moving to SE = 2, the best size of the list (CS)
is larger. One upside of moving to SE = 2 is
that less k-grams are used. This is reflected in
the reduction in processing time from K = 3
SE = 1 to K = 3 SE = 2 even as CS increases.
A look back at our previous speller's perfor-
mance shows that for the 2/1 k/SE combina-
tion, incorporating edit distance receives a
boost in score of 13 while increasing
processing time by about one second.

An important result that is not reflected in
Table 2.3.1 is that all 2/1 k/SE combinations
(for all values of CS) scored higher than any
other k/SE/CS combination. The worst per-

forming 2/1 combination was CS = 55 and CS
= 60 with 197 spellings correct. Clearly, 2/1
dominates when edit distance is incorporated.

Table 2.3.1: Best KGramWithEditDistance-
SpellingCorrector Parameters with TB = false

K SE CS Spellings Correct
(out of 270) Time (ms)

2 1 15 201 2,664
3 2 25 195 470
4 2 50 193 727
3 1 10 193 1,109
5 2 50 191 777

2.3.2 Corrections List Size Effect on
Performance

Graph 2.32 shows the edit distance correc-
tor’s performance with the parameters from
Table 2.3.1 as CS is varied. The graph also in-
cludes the highest score (188) from the origi-
nal corrector. The two correctors with SE = 1
exhibit a trend of peaking early and then
dropping off as CS increases. The three cor-
rectors with SE = 2 follow a general increase
in performance as CS increases, but they take
a temporary dip somewhere in the middle and
flatten out near the high end of the CS range.
The graph clearly shows that all k/SE pairs are
capable of outperforming the best original cor-
rector, but K=2 SE=1 outperforms the rest.

[4]

2.3.3 Sample Spelling Corrections
A glance at the output in Table 2.3.3 for the
best edit-distance-based corrector shows that
the edit distance technique indeed corrects the
previous error with the word “concider”. Un-
fortunately, the edit distance technique does
not solve the “failes” problem. As the output
shows, four words are tied for first place. If
we were to break ties by word frequency or
somehow merge word frequency with the edit
distance score, we would still not choose the
correct answer because “failed” has a vastly
higher word count than the other first place
words.

Interestingly, this case would be solved
with our original corrector using a word fre-
quency tie breaker but it cannot be solved us-
ing a word frequency tie breaker in conjunc-
tion with our edit distance corrector. One
possible solution would be to first perform tie
breaks based on the original k-gram overlap
scores, and then falling back to word frequen-
cy if necessary. This multi-tiered tie breaking
system would solve this case because it would
simply revert back to the original corrector’s
case of “files” and “fails” being tied for best
overlap score but “fails” ultimately winning
because of word frequency. In order to consis-
tently be able to solve these types of cases,
one would need some context in which the
word was used because the two words in con-
tention are the same word in different tenses.

2.3.4 Side-By-Side Comparison
A side-by-side comparison of the best original
corrector and the best edit distance corrector
(both with K = 2 and SE = 1) shows that while
the edit distance corrector corrects many of
the original corrector’s issues, it is not without
fault. Of the words that the original corrector
failed to correct, the edit distance corrector
successfully solved 30 of them. At the same
time, the incorporation of edit distance causes
the edit distance corrector to miss 17 words
that the original corrector successfully solved.

Table 2.2.3: KGramWithEditDistance-

SpellingCorrector Output
K = 2, SE = 1, TB = false, CS = 15

concider => consider

Correction Edit
Distance

Jaccard
Score

Word
Frequency

consider 1 0.636 98
considers 2 0.462 10
coincided 2 0.462 4
coincides 2 0.462 4
coincide 2 0.500 5
colder 3 0.455 2
confer 3 0.455 14
cider 3 0.667 1
considered 3 0.429 164
cinder 3 0.455 1
coincident 3 0.429 4
concern 3 0.417 32
concur 3 0.455 3
reconsider 3 0.429 3
confidence 4 0.429 53

failes => fails

Correction Edit
Distance

Jaccard
Score

Word
Frequency

failed 1 0.556 63
files 1 0.625 8
faites 1 0.556 1
fails 1 0.625 20
piles 2 0.444 6
miles 2 0.444 110
faces 2 0.444 162
families 2 0.455 45
fades 2 0.444 2
failures 2 0.600 5
fail 2 0.500 40
fairies 2 0.500 1
tailless 3 0.455 1
fairness 3 0.455 4
faithless 3 0.545 1

[5]

2.4 Word Frequency and
Tie Breaking

We have hinted at the possibility of using
word frequencies in a tie breaking mechanism
to solve many of our recurrent errors. As a
reminder, the TB parameter in our correctors
turns tie breaking on or off. In our original
corrector, the tie breaking mechanism is
choosing the word with highest word frequen-
cy and arbitrarily picking the word closest to
the front of the list if the words have the same
word frequency. In our edit distance corrector,
the tie breaking function first chooses the
word or words with highest Jaccard k-gram
overlap. If there is more than one such word
then it picks the word with highest word fre-
quency just as in the original spelling correc-
tor.

We integrated word frequencies and tie
breaking into both correctors because both
correctors exhibit cases where tie breaking
would help and word frequencies could be
used to differentiate words based on impor-
tance. We expected the tie breaking functio-
nality to have the most positive impact on the
edit distance spelling corrector because Le-
venshtein edit distance often returns a distance
of only 1, 2, or 3 for all words in the correc-
tions list. Thus collisions for the top spot are
more likely, so a tie breaking mechanism is
more likely to have a large impact.

Table 2.4a shows the top five k/SE pairs
for the original spelling corrector with our
word frequency tie breaking turned on. The
only notable difference between these results
and the TB = false results is that K = 2 is not
the best K value for the first time. Our tie
breaking function resulted in an average of 4
additional words being spelled correctly. A
side-by-side analysis of the 3/1 k/SE pair with
TB = true and TB = false reveals that turning
on tie breaking successfully corrected 6 addi-
tional words and did not cause the TB = true
corrector to miss any words that the TB =
false corrector successfully corrected.

Table 2.4a: Best KGramSpellingCorrector
Parameters with TB = true, CS irrelevant

K SE Spellings Correct
(out of 270)

Time
(ms)

3 1 193 1,166
2 1 191 2,493
4 1 190 1,016
5 1 190 1,074
6 1 189 1,088

Table 2.4b shows the top five k/SE pairs

for the edit distance spelling corrector with
our previously mentioned tie breaking
scheme. Again, K = 3 comes out on top. A
few noticeable differences between TB = true
and TB = false edit distance correctors is that
the TB = true corrector’s best SE values are
mostly 1 and its best CS values are relatively
low (mostly 10). While the CS values are
mostly low, this does not result in a shorter
processing time in comparison to the TB =
false edit distance corrector because the multi-
tiered tie breaking takes additional time. As
hypothesized, the tie breaking mechanism has
a much larger impact on the edit distance cor-
rector with an average of 7.8 additional words
being spelled correctly for each of the top five
correctors.

Table 2.4b: Best KGramWithEditDistance-
SpellingCorrector Parameters with TB = true

K SE CS Spellings Correct
(out of 270)

Time
(ms)

3 1 10 206 1,475
2 1 10 203 2,532
4 1 10 202 979
3 2 25 201 1,548
5 1 55 200 1,817

We also tried using a scoring function that

was a linear combination of the word frequen-
cy and Jaccard k-gram overlap score, but this
did not produce any noteworthy correctors.
We believe that a linear combination did not
produce any good correctors because in gen-
eral the Jaccard k-gram overlap score is a bet-

[6]

ter metric than word frequency, and as such
word frequency should only be used in cases
where tied first place words need to be ranked
instead of being used all of the time.

2.5 Partial Credit Analysis and
Summary

The scoring system used so far to evaluate our
spelling correctors gives the corrector one
point if the first word in the corrections list is
the correct word and gives no point otherwise.
This is the perfect evaluation method if one
plans to use only the top returned word, but it
is inadequate for evaluating the quality of the
entire returned list in general. In this section
we discuss spelling corrector performance
when partial credit is given. In our partial cre-
dit system, 1 point is given if the first word in
the corrections list is the correct word, 0.8
points if the second word is correct, 0.6 if the
third, 0.4 if the fourth, 0.2 if the fifth, and 0
otherwise.

With partial credit, Table 2.2 remains un-
changed except that K = 3 and K = 4 are diffe-
rentiated with K = 3 having a partial score of
214.6 and K = 4 having a partial score of
210.8. Similarly, the only change to Table
2.3.1 in terms of order is the differentiation
between K = 3 SE = 1 and K = 4 SE = 2 with
the K = 3 corrector receiving 221.4 points and
K = 4 receiving 218.6. In the tie breaking
realm of Table 2.4a, the only difference is K =
2 claiming the lead with 220.2 for K = 2 and
215.8 for K = 3. In Table 2.4b, the order re-
mains the same but K = 3 only wins by 0.4
points.

Due to the K = 2 SE = 1 corrector’s favor-
able performance on the partial credit evalua-
tion as well as its top scores in both non-tie
breaking correctors and its second place
scores in the tie breaking correctors, we be-
lieve that K = 2 SE = 1 is the best performing
k/SE pair.

3 Lucene

3.1 General Implementation and
Classes

The implementation of the Lucene experimen-
tation part is mainly divided into 4 classes:
 IMDBParser: Already given with the as-

signment and we do not make any
changes to the original code base.

 IMDBIndexer: Builds the index using
the given movie database. The index is
stored in a folder named cs276-index at
the path defined by ‘indexPath’ variable.

 IMBDSearcher: Searches the given que-
ries from part 2.1 and 2.2 from the as-
signment handout. Contains ‘main’ me-
thod and can be run stand-alone to get the
output.

 IMDBSearcherWithSpellCheck: Inte-
grates the best possible spell-checker
code implemented in the first part with
Lucene. It supports multiple queries with
the field names and possible special cha-
racters. For example, a query such as
‘PLOTS:murdered AUTHORS:George’ is
supported.

The spell-checker suggests the top 10 sug-
gestions for all the words used in the query but
picks up the first one from each class to con-
tinue. This is just to simplify the code base so
that multiple permutations of the suggestions
can be avoided.

The class also has a simple example im-
plementation using inbuilt Lucene spellcheck-
er, but the code has been commented out for
the purposes of supporting multiple word que-
ries. We also used Luke to play around with
the multiple query structures that Lucene can
support.

3.2 Analysis of Queries and Outputs
Lucene supports a rich query language that
provides the ability to create your own queries
with special clauses. The following sections
show the example query output and com-
ments.

[7]

3.2.1 Items that author called "Rob"
has posted

Table 3.2.1 shows the Lucene query and out-
put for the movies that have an author of Rob.
The output makes sense, since the documents
are sorted using the (scores, docID). The first
four documents have only ‘Rob’ in their au-
thors field and thus get the highest score (1.0)
from Lucene. The fifth and sixth document
have the same score (0.7071) since they con-
tain the word ‘Rob’ twice in the authors field.
The other documents have the same score
(0.625) and are sorted based on docID.

3.2.2 Within K Words
The given query was "Name of movie for
which the plotline has the words 'murdered'
and 'eighteen' within 5 words of each other."
Our original query of ‘PLOTS:”murdered
eighteen”~5’ returned no results. Interestingly,
swapping the order of murdered and eighteen
in the query produced the output in Table
3.2.2. Using the original order but with the
number 6 instead of 5 also returned the result
in Table 3.2.2.

There is only one document that contains
the words ‘murdered’ and ‘eighteen’ within 5
words of each other in the plot. The plot is
given as – “As an eighteen year old, Tom's fa-
ther was murdered. …” If the distance is in-
creased to 10, two more documents are added
to the result set: Sommarmord (1994), Ye ban
qiang sheng (1932) .

One interesting issue that we discovered
with Lucene was if you change the order of
the words – e.g. instead of “murdered eigh-
teen”, we use “eighteen murdered”, it gives
slightly different results!

For example, the result set of ‘murdered
eighteen’~5 was empty but ‘eighteen mur-
dered’~5 actually retrieved one document.
(tested on Luke 0.8).

Table 3.2.1: Query Output

Query
AUTHORS:Rob

Output
Title Authors

"Unser Walter" (1974) Rob
1001 Arabian Knots (1994)
(V) rob

Doragon booru Z 6: Gekitotsu!
Hyakuoku pawâ no senshi
(1992)

Rob

Soeurs (1992) Rob
Indictment: The McMartin Tri-
al (1995) (TV)

Rob Hartill Rob <ro-
bert@bb.com.au>

Wednesday (2007) Rob Sorrenti Rob
Sorrenti

"Adventures of McGee and
Me, The" (1986) Rob Loos

"Crocodile Hunter" (1996) Rob Hartill
"Danger Rangers" (2005) Rob Pottorf
"Dr. Phil" (2002) {Nasty
Neighbors (#6.8)} Rob Whitehurst

"Goodnight Sweetheart"
(1993) Rob Hartill

"Hi-De-Hi!" (1980) Rob Hartill
"Oh, Doctor Beeching!" (1995) Rob Hartill
"One Foot in the Grave"
(1990) Rob Hartill

"Only Fools and Horses"
(1981) Rob Hartill

"Open All Hours" (1976) Rob Hartill
"Place in the Sun, A" Rob Hartill
"Pole to Pole" (1992) Rob Hartill
"Porridge" (1974) Rob Hartill
"Rx for Survival: A Global
Health Challenge" (2005)
{How Safe Are We? (#1.6)}

Rob Whittlesey

Table 3.2.2: Query Output

Query
PLOTS:"murdered eighteen"~6

Or
PLOTS:" eighteen murdered"~6

Output
Title Plot Excerpt

Guilt Complex (2004) As an eighteen year old,
Tom's father was murdered.

[8]

3.2.3 Documents for which the movie
title is "10 items or less(2006)"

The output set is as expected. The documents
are arranged in the (scores, docID) order.

Table 3.2.1: Query Output

Query
TITLE:"10 items or less(2006)"

Output
Title

10 Items or Less (2006)
"10 Items or Less" (2006) {Health Insurance (#1.3)}
"10 Items or Less" (2006) {The New Boss (#1.1)}
"10 Items or Less" (2006) {What Women Want (#1.4)}

3.2.4 Keyword-weighted queries:
X='Hart' and Y='Rob'

The boosting operator ‘^’ boosts up the score
of word ‘Rob’. The score that is calculated for
word ‘Rob’ by Lucene is multiplied by the
factor 4 to get the final score of the document.
Thus, the documents containing the word Rob
will have preference but documents not con-
taining the word Rob will still be returned.
The + sign suggests that the word ‘Hart’ is
mandatory and the document must contain it
to be in the result set.

Even though, we boosted the score of term
‘rob’, there are no documents for which the
words ‘Rob’ and ‘Hart’ go together. So, the
only effect of boosting word ‘Rob’ here is to
reduce the scores of the documents retrieved
in general.

Since none of the author values contain
"Rob", this example is not too interesting. If
you change the query to "AU-
THORS:(Rachel^4 +Hart)", then all of the re-
sults stay in the same order except the two
containing "Rachel" are moved to the top two
results.

Table 3.2.4: Query Output

Query
AUTHORS:(Rob^4 +Hart)

Output
Title Authors

"Secret World of Og, The"
(2006)

Geoff Hart Geoff
Hart

40,000 Years of Dreaming
(1997) Simon Hart

Glenn Miller Band Reunion,
The (1989) (TV) Perry Hart

Picture This: The Times of Pe-
ter Bogdanovich in Archer
City, Texas (1991)

Doug Hart

White Shamans and Plastic
Medicine Men (1996) Daniel Hart

"Great Decisions" (1986) Rachel Hart Connol-
ly

Riding in Stride (2006) (TV) Rachel Hart Connol-
ly

Story of a Mother, The (2008) Hart, James David

3.2.5 Keyword-weighted queries:
X='Pereyra' and Y='Rob'

After looking through the documents, we rea-
lized that there are cases where an author ‘An-
thony Pereyra’ had shared plots with ‘Rob
Hartill’, and in other cases, he wrote the plots
by himself. We used this fact to study the ef-
fect of the boosting operator.

Though it does not support the information
need that we want to search for the author
whose last name is – ‘Pereyra’ and first name
is something like ‘Rob’, the query does help
us understand the effect of the boosting opera-
tor.

The expected output was we should see
the documents where Anthony Pereyra has
shared his views with Rob Hartill before the
documents with views only from Anthony Pe-
reyra. The following output shows that this
was really the case.

The effect of the boosting operator can be
understood for a query such as:
AUTHORS:"+Pereyra" AUTHORS:anthony
PLOTS:Patagonia^4

[9]

The word Patagonia is present in the plot
written by Rolo Pereyra. Without the boosting
operator, the first document retrieved contains
words – Anthony and Pereyra but not Patago-
nia. After the boosting is applied, the first
document retrieved does contain the word Pa-
tagonia even though the document is not writ-
ten by Anthony Pereyra.

Table 3.2.5: Query Output

Query
AUTHORS:(Rob^4 +Pereyra)

Output
Title Authors

Mask, The (1994)

Anthony Pereyra <hyperson-
ic91@yahoo.com> Ian Pugh
<skypilot@ezaccess.net> Qrrbir-
bel Rob Hartill Chris Makroza-
hopoulos <mak-
zax@hotmail.com> Robert
Lynch <docrlynch@yahoo.com>

Species (1995)

Claudio Carvalho, Rio de Janei-
ro, Brazil Alexander Lum
<aj_lum@postoffice.utas.edu.au>
Rob Hartill Anthony Pereyra
{hypersonic91@yahoo.com}

Oro nazi en Argentina (2004) Pereyra, Rolo
"Adventures of Jimmy Neutron:
Boy Genius, The" (2002) {Party
at Neutron's/Ultra Sheen
(#1.17)}

Anthony Pereyra <hyperson-
ic91@yahoo.com>

"Donkey Kong Country" (1997)
{The Legend of the Crystal Co-
conut (#1.17)}

Anthony Pereyra {hyperson-
ic91@yahoo.com}

"Drake & Josh" (2004) {Driver's
License (#2.9)}

Anthony Pereyra <hyperson-
ic91@yahoo.com>

"Drake & Josh" (2004) {Mean
Teacher (#2.11)}

Anthony Pereyra <hyperson-
ic91@yahoo.com>

"Drake & Josh" (2004) {The Bet
(#2.1)}

Anthony Pereyra <hyperson-
ic91@yahoo.com> Anonymous

"Drake & Josh" (2004) {Two
Idiots and a Baby (#1.4)}

Anthony Pereyra <hyperson-
ic91@yahoo.com>

"Fairly OddParents, The" (2001)
{The Big Problem!/Power Mad!
(#1.1)}

Anthony Pereyra <hyperson-
ic91@yahoo.com>

"Malcolm in the Middle" (2000)
{Lois's Birthday (#2.3)}

Anthony Pereyra <hyperson-
ic91@yahoo.com>

10,000 BC (2008) Anthony Pereyra {hyperson-
ic91@yahoo.com}

1990: I guerrieri del Bronx
(1982)

Anthony Pereyra {hyperson-
ic91@yahoo.com}

2012: The War for Souls (2010) Anthony Pereyra {hyperson-
ic91@yahoo.com}

Adventures of Elmo in Grouch-
land, The (1999)

Anonymous Anthony Pereyra
{hypersonic91@yahoo.com}

Agent Cody Banks 2: Destina-
tion London (2004)

Anthony Pereyra {hyperson-
ic91@yahoo.com} aus-
tin4577@aol.com

Aika (1997) (V) Anthony Pereyra {hyperson-
ic91@yahoo.com} Anonymous

All Dogs Go to Heaven 2 (1996) Anthony Pereyra {hyperson-
ic91@yahoo.com} Anonymous

Animal Crossing (2001) (VG) axemblue Anthony Pereyra
<hypersonic91@yahoo.com>

Ant Bully, The (2006) Anthony Pereyra <hyperson-
ic91@yahoo.com> movieguy3

3.3 Spelling Correction with Lucene
3.3.1 Support from Lucene
Lucene supports a couple of ways by which
you can check and correct spelling mistakes.

Inbuilt Spell-check class: Lucene has a
spell-check library of its own which imple-
ments n-gram spell checker method and the
Levenshtein distance approach.

Fuzzy words approach: Lucene supports
fuzzy searches based on the Levenshtein Dis-
tance, or Edit Distance algorithm. To do a
fuzzy search we can use the tilde, "~", symbol
at the end of a single word term. For example
to search for a term similar in spelling to "rob"
use the fuzzy search: "rob~". This search will
find terms like mob, rob, job etc. Thus, a nor-
mal search on ‘Trmmy’ does not give any re-
sults in the index constructed for movie data-
base but a fuzzy search using ‘Trmmy~’ gives
documents containing word ‘Timmy’.

3.3.2 Spelling Correction Using Our
Spell Check Mechanism

We used our best spelling corrector developed
in Section 2, the KGramWithEditDistanceS-
pellChecker with K = 2, SE = 1, TB = true,
and CS = 10, to integrate with the Lucene in-
dex to get the spell correction mechanism
working. The analyses of the spell checker is
discussed in detail in section 2.2 and 2.3. Here
we discuss the cases where the spell checker
performs / fails to perform well.

For a single word query like ‘eob’, the
suggestions returned by the spell check are:
[mob, sob, job, rob, erb, bob,
ebb, cob, knob, jacob] and the out-
put for the query was a single movie called
"Zombie(zero) (2001)" with an author of
"Mob Boss".

Given that QWERTY style keyboards are
the most popular keyboard used, we should be

[10]

able to conclude that the distance between
‘eob’ and ‘rob’ is intuitively less than with
other words. Our spell-checker which imple-
ments the standard Levenshtein Distance algo-
rithm does not take this into account and fails
to perform well in such cases.

For words with longer lengths though, the
basic k-gram approach helps in finding out the
nearest correct word. For example, for words
like "murderwd", it returns a good set of sug-
gestions: [murdered, murder, murders, mur-
derer, murderous, murderers, murdering,
murmured, mud, murat] and produces correct
output for the query as shown in Table 3.3.2.

Though our algorithm uses the similar
concept of k-gram with Levenshtein Distance
used in Lucene’s inbuilt spell-correction me-
chanism, we lack the support of field related
spell-corrections. Lucene does support field
related corrections and thus greatly improves
the accuracy in the name fields wherein stan-
dard dictionary words seldom occur.

3.3.3 Summary and Possible Improve-
ments for our Spelling Corrector

One improvement to our overlaid spelling cor-
rector on top of Lucene would be to use a sep-
arate spelling corrector for each field index. In
its current form, our spelling corrector indexes
the "big.txt.gz" file provided for the project. It
does not index any of the words in the IMDB
data. Our spelling corrector would have much
better performance if we actually used four
spelling correctors: one for each of the field
indexes (AUTHORS, TITLE, PLOTS) and
one that indexes all three fields' words. With
these four correctors, we would use the appro-
priate corrector when a field index is speci-
fied. For all query terms that do not contain a
field index, we would use the corrector that
indexed all three fields.

Another improvement would be to incor-
porate the standard keyboard layout as briefly
mentioned in the "eof" example.

Table 3.3.2: Query Output

Query
PLOTS:murderwd

(corrected to)
PLOTS:murdered

Output
Title Authors

"Midsomer Murders"
(1997) {Death in Chorus
(#9.7)}

the_mystery_man

Champagne Charlie (1936) Ed Stephan <ste-
phan@cc.wwu.edu>

A futura memoria: Pier Pao-
lo Pasolini (1986)

Giancarlo Cairella <ver-
tigo@imdb.com>

Courtyard, The (1995) (TV) Anonymous
iMurders (2008) JuggyGales
Jigsaw (1972) (TV) frankfob2@yahoo.com
MacGyver: Trail to Dooms-
day (1994) (TV)

"Baantjer" (1995) {De Cock
en de moord op de moorde-
naar (#1.4)}

Dutch90

"Moonlighting" (1985)
{The Next Murder You
Hear (#1.4)}

Cassandra Sumerro

"Nämndemans död, En"
(1995)

Mattias Thuresson
<mat-
tias.thuresson@mbox30
0.swipnet.se>

"Roy Rogers Show, The"
(1951) {The Treasure of
Howling Dog Canyon
(#1.4)}

frankfob2@yahoo.com

"Witse" (2004) {De bonami
(#1.2)} Rune Thandy

"Women's Murder Club"
(2007) {The Past Comes
Back to Haunt You (#1.7)}

Ron Kerrigan
<mvg@whidbey.com>

Conspiracy of Silence
(1991) (TV) <Blythe379@cs.com>

Grave Situations (2007) Anonymous
Lion Man, The (1936) frankfob2@yahoo.com

Man from Sundown, The
(1939)

Les Adams <long-
horn3708@windstream.
net>

Phantom of the West, The
(1931)

Jim Beaver <jumble-
jim@prodigy.net>

Sins of the Past (1984) (TV) frankfob2@yahoo.com

