
[1]

Pro, Con, and Affinity Tagging of Product Reviews

Todd Sullivan
Department of Computer Science

Stanford University
todd.sullivan@cs.stanford.edu

1 Introduction
As internet use becomes more prevalent, an
increasing number of consumers are turning to
product reviews to guide their search for the
best product. This is especially true for prod-
ucts that the consumer may not have extensive
knowledge about, such as cameras and GPS
devices. According to a 2006 eTailing Group
and JC Williams Consultancy study, 70% of
online shoppers examine customer reviews be-
fore they buy and 92% find customer reviews
to be "very helpful" in making a decision,
which makes product reviews an important
facet of consumer decision making and an im-
portant aspect of retailing and e-commerce.

While plain text reviews are helpful, most
consumers do not have enough time to read
many reviews about multiple products. As a
result, reviews are much more helpful if they
contain tags for the pros and cons. Most con-
sumers would agree that reviews are even
more helpful if the product's main page that
contains all of its reviews contains the aggre-
gate information of these tags.

In this paper, we consider the task of as-
signing pros, cons, and affinities (more on
these later) to product reviews given informa-
tion such as the review's title, comment text,
and rating. We begin in Section 2 with back-
ground research in extracting pros and cons
from reviews and describe our problem defini-
tion in Section 3. We then present our baseline
systems that use a bag of word approach with
a Naïve Bayes classifier (Section 4). In Sec-
tion 4 we also examine the implications of
various preprocessing techniques such as re-
moving punctuation, lowercasing words, and
stemming. In Section 5 we present a maxi-
mum entropy classifier that shows consider-
able performance increases over the baseline

system. We move to making joint decisions on
tag sets in Section 6, and finish with a brief
listing of the many ideas and techniques that
we did not have sufficient time to incorporate
into our systems.

2 Background
There has been many successful previous
works pertaining to analyzing reviews. For
example, Bo Pang, Lillian Lee, and others
have had much success in predicting the rat-
ing, or sentiment, expressed in review text [1,
2, 3]. In their work, they found that sentiment
classification was by-and-large more difficult
than standard topic-based categorization, with
many successful techniques in topic classifica-
tion such as incorporating frequency informa-
tion into n-grams actually decreasing perform-
ance in the sentiment classification setting.
Additionally, they found that unigram pres-
ence features were the most effective (none of
their other features provided consistent per-
formance boosts when unigram presence fea-
tures were used), and that bigrams were not
effective at capturing the context.

Other works, such as that of Soo-Min Kim
and Eduard Hovy [4] have explored extracting
pros and cons from reviews. In their work,
they found that pros and cons occur in both
factual and opinion sentences within reviews.
Their results hint at the possibility of using
different tactics to extract tags based on
whether the sentence is determined to be fac-
tual or an opinion.

3 Problem Definition
Our setting is slightly different from previous
studies. We have obtained product review data
for the GPS Device category of Buzzil-
lions.com, which is a product review portal

[2]

run by PowerReviews. PowerReviews offers
customer review solutions to e-commerce
businesses.

Their system collects reviews from con-
sumers that are verified to have purchased the
product from an e-commerce store in their
network. In addition to a product rating, title,
and comment text, the customer is given the
option to input pros, cons, and affinities as
tags. Affinities are summarizations of the type
of consumer that the customer is, such as the
affinities "Frequent Traveler," "Bad With Di-
rections," and "Technically Savvy" in the GPS
Device category. The user can input their own
tags for these sections as well as choose from
four to ten tags that are either preselected by
PowerReviews moderators or are the most
popular tags in the category.

Instead of extracting pro and con sen-
tences from the comment text, we use the
most frequently inputted tags as classes and
attempt to classify the existence of each tag
given the available information about the re-
view. First, in Sections 4 and 5 we attempt to
classify each tag independently of the others.
Then in Section 6 we move to making a joint
decision given the probabilities obtained from
the independent classifications. We use the
standard precision, recall, and balanced F-
measure as performance metrics.

3.1 Datasets
Our datasets include a total of 3,245 reviews.
We randomly split these reviews into training,
validation, and test sets with an 80%, 10%,
10% split. For all experiments we performed
training on the training set, used the validation
set to find optimal parameters, and present re-
sults by applying the classifier with the opti-
mal parameters from the validation set to the
test set. We only include tags that occur at
least 50 times, which amounts to 19 pros, 9
cons, and 8 affinities. Table 3.1 shows the tags
and their frequencies for pros, cons, and af-
finities.

As one can see, the frequency of pros is
much higher in comparison to cons. This
causes many problems that we will discuss in
later sections. Additionally, many of the tags
have frequently occurring opposites, such as
"Long Battery Life" and "Short Battery Life",
and the affinities "Technically Challenged" vs.
"Technically Savvy." We leverage these facts
in Section 7 when optimizing the tag sets for
each review. On the other hand, the distinction
between several of the pros is quite vague. For
example, "Reliable" and "Reliable Perform-
ance" can be interpreted to be the same attrib-
ute, as well as all of the pro tags that start with
the word "easy." The existence of the con
"None" is also a misnomer because the fact
that there are no cons is not itself a con.

Table 3.1: Pro, Con, and Affinity Classes
Pros

Frequency Class
137 Accurate Maps

1,320 Acquires Satellites Quickly
2,051 Compact
223 Durable
143 Easy Controls

1,381 Easy Menus
141 Easy to Follow Directions

1,997 Easy to Read
1,967 Easy to Set Up

70 Easy to Use
242 Good Value
183 High Quality
396 Long Battery Life
144 Nice Visual Interface
167 Reliable

1,674 Reliable Performance
511 Secure Mounting

1,746 Simple Controls
433 Strong Construction

Cons
Frequency Class

278 Acquires Satellites Slowly
109 Bulky
131 Complicated Controls
175 Difficult Menus
86 Difficult to Read

224 Flimsy Mounting
344 Inaccurate
56 None

456 Short Battery Life

[3]

Table 3.1 Continued
Affinities

Frequency Class
600 Bad With Directions

1,096 Frequent Traveler
720 Gearhead
402 Outdoor Enthusiast
60 Practical
140 Professional
203 Technically Challenged
191 Technically Savvy

Each review contains a title, comment

text, rating (from one to five), source (web or
email), creation date (down to the second), au-
thor nickname, author location, length used,
and bottom line. The source and creation date
are not directly inputted by the consumer. The
user inputs their author nickname and location
by typing into two text boxes, so the informa-
tion is not standardized and can include any-
thing that the user decides to type. The bottom
line is either "Yes, I would recommend this to
a friend" or "No, I would not recommend this
to a friend." The length used field indicates
how long the consumer has used the product
and has one of six possible values:
 Not specified
 One month or less
 One to three months
 Three to six months
 More than six months

3.2 Difficult Data
The majority of the reviews are very short,
containing only a few sentences. Run on sen-
tences with no punctuation are quite popular.
In fact, the average number of sentences in the
comment text is five while the average word
count (counting punctuation as individual
words) is 88.49.

This small amount of information makes
the classification task rather difficult. For a
moment, consider the review in Table 3.2a
and attempt to assign the pros, cons, and af-
finities from Table 3.1. Even with the hint that
the review contains one pro, one con, and one
affinity, there is almost no chance that a hu-

man using any kind of reasoning skills would
identify the correct tags. Perhaps you chose
the pro of "Good Value" because the con-
sumer said that the product was not expensive.
You probably also thought that the con was
"Short Battery Life" because of the mention of
getting an extra battery. In fact, the pro that
the consumer chose was "Easy To Set Up,"
the con was "Complicated Controls," and the
affinity was "Outdoor Enthusiast." In our
opinion, assigning these tags is nearly impos-
sible given the limited information.

Table 3.2a: Review Example

Author Harvey
Source web
Creation Date 2007-04-14 16:38:27
Location Chicago, IL
Length Used Not specified
Rating 3
Bottom Line Yes, I would recommend this…
Title "I needed it"

Comment
"Nice to have to extra battery handy,
never know when you will need it,
and not expensive."

We found these kinds of issues to be fre-

quent in our data. We posit that the fact that
the user is asked to input tags tends to cause
the user to mention other aspects of the prod-
uct in their comment text. Indeed, many re-
viewers seem to not even bother to mention
the pros and cons in their comment text when
they have included them as tags.

Table 3.2b shows another review that is
difficult to assign tags to. All remarks in the
title and comments are negative and the rating
is a one, yet the reviewer gave the product
four pros and only one con, with the con not
even specifically mentioned in the comment
text. An open question not directly related to
natural language processing that this brings at-
tention to is whether the solicitation of the
tags causes the reviewer to provide additional
unique information or if it causes the reviewer
to expend less effort constructing the com-
ment text in favor of clicking the checkboxes
next to the proposed tags.

[4]

Table 3.2b: Review Example

Author ht
Source web
Creation Date 2007-08-01 16:47:25
Location New Jersey
Length Used Not specified
Rating 1
Bottom Line No, I would not recommend this…
Title "Don't buy....3 in a row no good"

Comment

"Went through 3 units in less than 1
week. Staples was very helpful but
the problem is with the unit. Nextar
customer service was of no help. Re-
turned and got a Garmin Nuvi 200
and it is great. I should have went
with a name brand to begin with. Be
wary…"
Compact
Easy To Read
Easy To Set Up Pros

Simple Controls
Cons Inaccurate

Professional
Outdoor Enthusiast Affinities
Gearhead

4 Bag of Words
After an examination of the review data, we
built a baseline bag of words Naïve Bayes
classifier. We will not include a discussion of
the technical details of the Naïve Bayes classi-
fier, or any of the other machine learning algo-
rithms we use, as they are not directly the
point of this study.

Our bag of words features are standard
unigrams. We experimented with both fre-
quency unigram features and mere presence
unigram features. We quickly found including
frequency to be around 1.5 times better than
using binary presence features, which is in
contradiction to Pang and Lee's findings in
sentiment classification but consistent with
typical document classification results.

Due to the relatively fast training and test-
ing time of the Naïve Bayes classifier (in
comparison to SVMs, etc.), we were able to
study the effect that various preprocessing
methods have on performance. Our preproc-
essing methods include lowercasing all char-

acters, removing all punctuation, and using
various stemmers. Our stemmers include the
Porter and Porter 2 Snowball stemmers [5],
and the Lovins and Iterated Lovins stemmers
[6]. We used the WEKA 3 library [7] for the
classifiers in this section as well as the stem-
mers.

We also experimented with varying the
vocabulary size in several ways, including
dropping all words that have a frequency less
than a given amount, removing the top X% of
words ordered by frequency, removing the
bottom X% of words ordered by frequency,
and removing words based on the ratio of their
occurrences in the positive class and negative
class reviews given a particular tag. Our at-
tempt at pruning the vocabulary based on ratio
came as an attempt to remove words that may
occur frequently, but that occur in both posi-
tive and negative reviews in equal proportion.
(Here, when we say positive reviews we mean
reviews that contain the particular tag that we
are trying to reason about.)

In addition to the above preprocessing op-
tions, we also included normalizing the fre-
quencies by the length of the sentence and
scaling frequencies to [-1,1]. We introduced
these additional preprocessing options primar-
ily because we tried other classifiers such as
SVMs which generally work better when the
feature vectors are scaled to a particular range.

4.1 Naïve Bayes Results
We tried all unique combinations of low-

ercasing, removing punctuation, stemming,
normalizing, and scaling to the range [-1,1],
while also sweeping through the X% value in
increments of five percent for removing the
least frequent words in the vocabulary and for
removing words with a ratio closest to one.
Table 4.1 shows the results of these experi-
ments when trying to classify the pro "Com-
pact."

The first entry in the table shows the re-
sults without any preprocessing. The second
includes, in order, lowercasing all words, re-

[5]

moving punctuation, using the Iterated Lovins
stemmer, and removing the least frequently
occurring 30% of the vocabulary. Including
these preprocessing steps improves the nega-
tive class F-measure by 8.6 points and the
positive class F-measure by 5.3 points. Re-
placing the vocabulary reduction with a reduc-
tion that removes the 27% of the vocabulary
that has a ratio between frequencies in positive
and negative reviews closest to one improves
scores further, edging out 0.7 more points in
negative F-measure and 0.6 additional points
in positive F-measure.

The bottom listing in Table 4.1 was the
best performing Naïve Bayes bag of words
classifier that we could muster. The Lovins
stemmers almost always outperformed the
Snowball stemmers, and stemming after low-
ercasing/removing punctuation consistently
resulted in better performance than stemming
first. In general, lowercasing improved scores
more than removing punctuation. Normalizing
and scaling improved scores in some situa-
tions, but did not appear in the best perform-
ing classifiers.

Table 4.1: Naïve Bayes Results

on the Pro "Compact"
No Preprocessing

Class Precision Recall F-measure
Negative 36.7 33.3 34.9
Positive 76.1 78.8 77.3

Lowercase, Remove Punctuation, Iterated Lovins
Stemmer, Remove Bottom 30% of Vocabulary

Class Precision Recall F-measure
Negative 51.0 37.9 43.5
Positive 79.0 86.5 82.6

Lowercase, Remove Punctuation, Iterated
Lovins Stemmer, Remove 27% by Ratio

Class Precision Recall F-measure
Negative 53.2 37.9 44.2
Positive 79.2 87.6 83.2

4.2 Additional Baseline Classifiers
We also experimented with using other off-
the-shelf classifiers such as various trees and
nearest neighbor algorithms from WEKA, and
SVMs with linear, polynomial, and radial ba-

sis function kernels using LibSVM [8]. All of
the trees had vastly worse performance than
the Naïve Bayes classifier. Despite following
the LibSVM guide on parameter selection [9],
we were unable to achieve performance with
an SVM that was comparable to the best Na-
ïve Bayes classifier.

5 Maximum Entropy Classifier
Our primary tool for our classification prob-
lem is a maximum entropy classifier. The
maximum entropy classifier allows us to eas-
ily add many features to constrain the current
data instance while leaving the rest of the
probabilities pleasantly uniform (equally
likely). We used the Stanford Classifier [10]
as our out-of-the-box maximum entropy clas-
sifier.

In this section we will first describe our
wide range of features. We will then discuss
our hill climbing approach to finding the op-
timal feature set for a particular tag and pre-
sent our optimal feature sets for several choice
tags. We will end the section with the results
of applying these optimal feature sets to the
test set.

5.1 Features
Our features can be segregated into two
groups: global features and textual features.

5.1.1 Global Features
Our global features are non-linguistic features
that leverage the information that we have
about the review/reviewer excluding the re-
view comment and title. These features in-
clude most of the non-comment information
described at the end of Section 3.1, such as the
product's rating, the review's source, date/time
of the review's creation, the author's username,
the length used field, and the author's location.
Most of these features are self-explanatory
and only contain a few possible values.

By examining the training set we can eas-
ily see which features are most likely to be
useful. For example, the product's rating is an

[6]

obviously useful feature. Only 44% of reviews
with a rating of one contain the pro "Com-
pact," while 76% of reviews with a rating of
five contain the tag. In the following subsec-
tions we will briefly elaborate on the
date/time, username, and location features.

5.1.1.1 Review Creation Date/Time
The date and time that the reviewer submitted
the review is stored in a standard format, so
we can easily extract the month, day, year,
hour, minute, and second of the submission.
We include the month, day, year, and hour as
separate features. We also include combina-
tions, such as the year and month, year and
hour, and month and hour. Additionally, we
include the day of the week (Sunday through
Saturday), the day of the month, the day of the
year, the week of the month, the week of the
year, and whether the review was submitted
during A.M. or P.M.

We include many of these features be-
cause an analysis of the distributions obtained
by conditioning on some of these features was
significant. For example, a review submitted
on Friday is far less likely to have a con in
comparison with reviews submitted on Mon-
day or Tuesday (with Monday being the most
negative). Several of the features did not seem
to be significant factors, but were simple to
include and remove during our feature selec-
tion process if needed.

5.1.1.2 Username Features
We include the raw username as a feature out
of the off-chance that we come across multiple
reviews by the same reviewer. We also in-
clude the amount of characters in the user-
name as a feature, and we make a crude at-
tempt to break usernames into separate words.
To break usernames into separate words, we
first tokenize the username by spaces (some
users are kind enough to separate their user-
name into words for us). We also separate the
username into words by splitting whenever we
see a change in capitalization or when we see

a change from alphabetical characters to num-
bers or symbols. We use each of the words de-
rived from the username as separate features.

Our reasoning behind these username fea-
tures is that many usernames are indicative of
the personality or type of person that wrote the
review, which is most helpful for classifying
affinities. For example, our data contains the
follow helpful usernames: The Traveler, Soc-
cerMom, Old timer, UCBearCatMike, and
The Tech Guy. All of these usernames provide
hints that are sometimes even more useful for
learning about the reviewer than the comment
text itself since many reviews do not contain
any personal information in the comment text.

5.1.1.3 Location Features
We include location features for the author's
street, city, state, region, and country, as well
as features indicating whether any of the pre-
viously listed location values are present in the
review information. The intuition behind in-
cluding these features is that reviewers from
the same state may on average have similar af-
finities and may be more likely to complain
about certain cons or praise certain pros that
are important in their area. As a reminder, the
user inputs their location into a textbox, so
they are allowed to type any free-flowing text
that they desire. Thus to extract information
such as the city and state of the author, we
must identify which segments of location field
denote the city, state, etc.

We identify the various location attributes
using modified gazetteers from GATE [11].
These gazetteers contain popular cities, street
names, and various spellings of the U.S.
states. We do not make any attempt to merge
multiple spellings of states or cities. Thus
while "CA" and "California" are both recog-
nized as states, they are not grouped into the
same feature.

The gazetteers work surprisingly well, but
many location strings remain with unknown
location types for many words. We employ a
simple procedure to fill in the missing values.

[7]

We start at the last token in the string and
work towards the front. If we come upon a to-
ken with a missing location type, we look at
the location type of the token one to the right
and assign a location type according to Table
5.1.1.3.

After assigning a location type to all to-
kens we chunk the tokens together based on
their type. This process, which allows us to
treat multi-word states and cities as single en-
tities, involves joining neighboring tokens that
have the same location type.

Table 5.1.1.3: Assigning Location Types

Previous Location Type Assigned Current Type
State City
City City

Region Region
Country State
Street Street

5.1.2 Textual Features
Our textual features include many basic fea-
tures such as the amount of words in the title,
the number of sentences in the comment, the
amount of words in each sentence, and
whether the title contains a question mark. We
also include choice n-grams. At first, we ex-
perimented with including all unigrams, and
then added bigrams and trigrams. We found
that including all bigrams and trigrams hurt
performance. We also found that selecting
only specific unigrams (as well as larger n-
grams) increased performance.

Thus we include as features the unigram,
bigram, trigram, and 4-gram that begin and
end each sentence (including the title). We
also include all adjectives, with the compara-
tive, superlative, and normal adjective tags
distinguished separately. Additionally, we in-
clude each word with the previous word's part
of speech tag as a feature and if the previous
word was an adjective, then we include as a
feature the bigram containing the previous
word and the current word.

We also include features pertaining to tag
tokens. We split into tokens the particular tag
that we are currently making a classification

decision on. We then look for n-grams of the
tokens in the title and comments, including
these n-grams as features. Upon finding an n-
gram of tag tokens, we also include the previ-
ous word joined with its part of speech tag as
a feature. We continue adding these word +
part of speech features for up to three words in
both directions. We also include the closest
verb and closest adverb to the left of the n-
gram of tag tokens as features, and include
features indicating which tag tokens were
found and the frequency of the tokens. We did
not construct any lists of synonyms or similar
phrases for each tag due to time constraints.

5.2 Feature Selection
We select the optimal feature set by perform-
ing a random-walk hill climbing search
through the feature space. We select optimal
feature sets individually for each tag, and also
include using the top ten sets of preprocessing
options from our study with the baseline sys-
tem. In this section we present the results for
select tags, such as our running example of the
pro "Compact." As usual, we performed our
feature selection based on the scores from the
validation set, and in the results section (Sec-
tion 5.3), we present the scores for applying
the feature sets to the test set.

5.2.1 "Compact" Feature Set
The highest performing preprocessing options
set was lowercasing all words and then using
the Porter Snowball stemmer to stem the
words. Of the global features, the rating,
source, length used, and author's street, city,
region, and country were useful. The follow-
ing date/time features were found to be impor-
tant: year, month, year + month, year + hour,
month + hour, day of week, day in month, and
whether the review was submitted during AM
or PM hours. The author's username split into
tokens as well as a special tag indicating the
last token in the username were helpful.

Among the textual features, the tag token
features were most prominent. The count of
each tag token, the part of speech of the word

[8]

immediately to the right of the tag token n-
gram, and the previous adverb were useful.
Out of the three word + part of speech features
to either side of the tag token n-gram, only the
feature two to the left, and the features two
and three to the right were used.

The only title-specific feature that our fea-
ture selection found useful was the number of
words in the title while the only comment-
specific feature was the total word count. The
only other textual features were the unigram
ending each sentence, the trigram starting each
sentence, and the previous word + current
word when the previous word's part of speech
tag was an adjective.

An interesting result is that the majority of
the features are not textual, although we pos-
ited that the textual features were playing an
important role in the classification. To deter-
mine which groups of features mattered most,
we selectively removed groups of features and
applied the resulting classifier to our data. Ta-
ble 5.2.1 details the results, listing the group
of features removed and the amount of de-
crease in sum of negative class and positive
class F-measure.

To our surprise, while the textual features
definitely play a role, the length used and
date/time features are far more important.
Removing all date/time features caused an
8.62 drop in F-Measure while removing length
used caused an 8.65 drop and removing all
textual features only caused a 6.57 drop!
While it is good to see that the global informa-
tion significantly contributes the classification
task, we have exhausted most of the features
that can be derived from this information.
Thus we see any and all future improvements
coming from more sophisticated textual fea-
tures.

5.2.2 "Bulky" Feature Set
To contrast the feature set selected for the
"Compact" tag, we examined the feature set
selected for its opposite – the con "Bulky."
The "Bulky" feature set exhibits many differ-
ences from "Compact." The rating, length

used, title length, and comment sentence word
count features are still used, but the source and
author name features are not. Of the author lo-
cation features, only the country is used.
Among the date/time features, only the day of
the week and day of the month are used.

Both the previous verb and previous ad-
verb for tag tokens are used whereas "Com-
pact" only used the previous adverb. Addi-
tionally, the search found all three word + part
of speech tags in both directions from a tag
token n-gram to be helpful. None of the n-
grams beginning sentences were found to
help, but the unigram and bigram ending the
sentence improved performance.

Table 5.2.1: Importance of Features

Removed Feature Group Change
in F-Measure

All tag token features -1.24
Previous word + current word
given the previous word was an ad-
jective

-1.22

Trigram beginning sentence and
unigram ending sentence -2.29

Rating and source features -4.75
Author name features -0.30
Date/time features -8.62
Length used -8.65
Location features -0.78
All textual features -6.57

5.3 Results
In this section we present the results of using
our classifier to classify for each tag inde-
pendently of the other tags. Due to time con-
straints, we were unable to examine many dif-
ferent tags while developing our features. We
developed all of the previously listed features
through an in-depth analysis of the "Compact"
tag. As a result, our performance on this tag is
quite good. Most of our features tend to carry
over well to other pro tags, but the perform-
ance on cons and affinities is dismal in com-
parison.

Table 5.3a presents our best, second best,
worst, and cumulative performance on pro
tags. The worst performing pros tend to be
tags that are least frequent, occurring around

[9]

15% of the time. The best performing pros
have a much more balanced frequency, occur-
ring in about 60% of the reviews.

Table 5.3a: Best, Second Best, Worst, and

Cumulative Performance on Pros
Best: "Compact"

Class Precision Recall F-measure
Negative 82.2 69.3 75.2
Positive 82.7 90.8 86.6

Second Best: "Easy To Read"
Class Precision Recall F-measure

Negative 74.4 73.1 73.7
Positive 85.2 86.0 85.6

Worst: "Long Battery Life"
Class Precision Recall F-measure

Negative 90.7 95.3 92.9
Positive 36.4 21.6 27.1

Cumulative
Class Precision Recall F-measure

Negative 91.5 92.0 91.8
Positive 74.4 73.1 73.7

Table 5.3b displays the cumulative results

for cons and affinities, as well as overall re-
sults that sum all tag decisions together. The
cons and affinities seem to suffer most from
their lower frequencies. For many of these
tags the classifier decides to classify all re-
views as not containing the tag.

Table 5.3b: Cumulative Performance on Cons,

Affinities, and All Tags
Cumulative on Cons

Class Precision Recall F-measure
Negative 94.2 99.0 96.6
Positive 55.6 17.2 26.2

Cumulative on Affinities
Class Precision Recall F-measure

Negative 89.9 95.5 92.7
Positive 50.5 29.8 37.5

Cumulative on All Tags
Class Precision Recall F-measure

Negative 91.9 94.8 93.3
Positive 70.9 60.3 65.2

6 Multi-Tag Optimization
To increase performance, we developed two
methods that attempt to perform multi-tag op-
timization to find the best tag set for a given

review. Our first technique is a classifier built
on top of the maximum entropy classifier's
output and our second is a "probabilistic"
combinatorial search algorithm. Both methods
use the probabilities that our maximum en-
tropy classifier outputs for each tag on each
review.

6.1 Second-Layer Classifier
Our second-layer classifier uses as features the
probability of the positive class for each tag as
reported by our maximum entropy classifier.
Thus, there are 36 features for each review.
Due to the small number of features and the
ease at which one can "plug-in" classifiers us-
ing WEKA, we were able to try a multitude of
classifiers for the task, including Naïve Bayes,
logistic regression, nearest-neighbor variants,
SVMs, and various trees. We found the stan-
dard nearest-neighbor classifier using normal-
ized Euclidean distance to perform best.

Our results are somewhat lackluster. When
using all 36 probabilities as features, we were
unable to obtain higher scores on cons or af-
finities, and we were only barely able to edge
out a better score on the pros. Table 6.1 pre-
sents these results.

Table 6.1: Cumulative Performance on Pros,

Cons, and Affinities using all 36 Features
Cumulative on Pros

Class Precision Recall F-measure
Negative 91.8 91.7 91.8
Positive 74.0 74.1 74.1

Cumulative on Cons
Class Precision Recall F-measure

Negative 94.2 98.9 96.5
Positive 52.2 17.2 25.8

Cumulative on Affinities
Class Precision Recall F-measure

Negative 89.1 94.1 91.5
Positive 47.8 31.8 38.1

We believe that the method would have
more success if our classifier's performance on
cons and affinities was better. We found only
marginal improvement by excluding various
sets of tags from the features. In particular, the

[10]

positive F-measure for affinities increases to
42.2 when only using the affinity probabilities
as features, but its negative F-measure was
only 91.6, which is still below the classifier's
score. The pro and con scores were highest
when using all 36 features.

6.2 Combinatorial Search
After a dissatisfying first try with our second-
layer classifier we changed routes and devel-
oped an algorithm that attempts to find the op-
timal tag set given various probability distri-
butions derived from the training data. In this
section we will describe the probabilities that
we include, our scoring metric, our two search
methods, and our method for finding the best
weights to use in the scoring metric.

6.2.1 Probability Distributions
Our first group of probabilities that we include
are the probability of a tag set size condition-
ing on various elements. These probabilities
include conditioning on nothing as well as
conditioning on each tag in the set, and the re-
view's rating, author's state/province, length
used field, source, comment word count, sen-
tence count, title word count, bottom line, day
of week, hour of day, and month.

Our second group of probabilities pertain
to the frequency of occurrence of each tag set.
Again, these probabilities include conditioning
on nothing as well as conditioning on each of
the items listed for the tag set size probabili-
ties. We efficiently compute these probabili-
ties through the use of bitsets. Before begin-
ning the search, we compute two bitsets for
each individual tag, where the number of bits
is the amount of reviews in the training set.
For the first bitset, each true bit indicates that
the review referenced by the bit's index con-
tains the particular tag. The second bitset cap-
tures the opposite, containing a true bit for
each review that does not contain the tag.

To compute the probability of a particular
tag set, we simply apply logical AND to each
tag's appropriate bitset (depending on whether
the tag exists in the tag set or not), and divide

by the total number of reviews in the training
set. We apply a small amount of smoothing so
that no probabilities are zero. To compute the
probability conditioning on some element
such as the review's rating, we compute bitsets
for each possible value of the conditioning
element and include the appropriate bitset in
the logical AND. Instead of dividing by the
number of training reviews, we divide by the
number of reviews that satisfy the condition.
We apply bucketing to deal with conditioning
on information such as comment word count.

6.2.2 Scoring Metric
Our scoring metric that we are trying to
maximize is a weighted sum of the classifier's
probability and the previously described prob-
abilities from the training data. We call our al-
gorithm a "probabilistic" combinatorial search
algorithm because we make no attempt to en-
sure that the score is a true probability – and
indeed it is not in our formulation.

6.2.3 Search Methods
We employ two search methods: an almost-
complete search and an even less complete
probing method. In the following descriptions,
let N be the number of tags that we are con-
sidering. When attempting to optimize for all
tags, N is 36.

6.2.3.1 Almost-Complete Search
Our almost-complete search uses a priority
queue to manage tag sets. We begin by adding
2N incomplete tag sets to the queue. The first
N of these tag sets have one of the tags set to
true and all other tags set to unspecified (we
have not made a decision on them yet). The
second N are the opposite, having one of the
tags set to false and all others unspecified.

We then repeatedly remove the highest
scoring item from the queue. If the highest
scoring item contains no unspecified tags, then
we return the tag set as the optimal tag. This
tag set is the optimal tag set because specify-
ing additional tags only adds more restrictions,
and thus always lowers the score.

[11]

If the tag set contains unspecified tags then
we loop over these unspecified tags and add
two new tag sets to the queue for each un-
specified tag. The first of these tag sets in-
cludes the particular unspecified tag assigned
to true while the second has the tag assigned
to false. The algorithm is "almost-complete"
because we use a bounded priority queue of
1,000,000 tag sets.

6.2.3.2 Probing
The almost-complete search method can han-
dle tag sets of sizes up to 10 or 12. Unfortu-
nately, this is a far cry from our goal of opti-
mizing all 36 tags simultaneously. In our
probing method we collect anywhere from
1,000 to 18,000 unique probes and return a k-
best list of tag sets gathered during our prob-
ing.

For each probe, we begin with all tags un-
specified. We generate a random permutation
of the tags, which we use as the ordering that
we will assign the tags. When making each tag
decision, we have the option of assigning the
tag as true or false. We determine which value
to assign by calculating the score of both re-
sulting incomplete tag sets and using the score
to calculate a probability of choosing true or
false. In particular, if the score of choosing
true is X and the score of choosing false is Y,
then we choose true with a probability of X /
(X + Y). Our algorithm quits and returns the
current k-best list if it fails to find a new
unique probe after 50,000 attempts.

6.2.4 Weights Optimization
The probability distributions that we use in
our scoring metric results in needing to choose
25 weights. After trying various methods for
assigning weights, we found the best approach
was a stepwise search that gradually adds
more nonzero weights into the scoring metric.
We limit the weights that each distribution can
take on by only allowing each distribution to
hold equal weight or less weight in compari-
son to the classifier's probabilities.

We begin with all weights set to zero ex-
cept the classifier's probabilities. We then at-
tempt to assign weights to each of the distribu-
tions one at a time, keeping track of the as-
signment that results in the highest score. Af-
ter iterating over all distributions, we have the
best scoring weight set which contains non-
zero weights for the classifier's probabilities
and only one other distribution. We then con-
tinue recursively, attempting to assign weights
to each zero weight and keeping the nonzero
weights from the previous round fixed. After
the second iteration, we have the best scoring
weight set that contains nonzero weights for
the classifier's probabilities and two other dis-
tributions. If completing an iteration does not
increase the score over the previous iteration
then we quit.

We try weights for a distribution using a
binary-style search. We first set the end points
for the possible weight range to zero and the
value of the classifier's weight. We then run
the combinatorial search algorithm using the
weight that is half-way in-between the two
end points. If the resulting score is higher than
our previous best score then we move upwards
into searching in the top half of the range, and
down to the bottom half otherwise. We add
one additional trick in that if moving upwards
at any point does not produce a better score
then we return and attempt to search the bot-
tom half of the particular range at that split
point. We do not include a similar procedure
when searching the bottom half of a range.

6.2.5 Weights Optimization Results
As the next section will show, we found our
best performance gains for affinities by jointly
optimizing only the affinity tags (not includ-
ing pros or cons in the optimization process).
In this section we present the weights that we
found to be optimal for the affinity tags. Table
6.2.5 shows the nonzero weights that im-
proved the score over solely using the classi-
fier's probabilities.

Aside from the classifier itself, the strong-
est weights were given to the set size prob-

[12]

abilities conditioned on rating, source, and au-
thor location. One can easily find a reason
why all of the probability distributions with
nonzero weight might help improve the classi-
fication, especially since we are considering
affinities. An interesting outcome is that dif-
ferent types of distributions received nonzero
weights depending on the type of tags that we
tried to jointly optimize. In the case of opti-
mizing all pros together, nonzero weights
were given to distributions pertaining to the
month, day of week, and bottom line, whereas
here with affinities information such as the
source and author location is important.

Table 6.2.5: Optimal Weights for Affinities

Probability
Distribution Weight

Maximum Entropy Classifier 100
Occurrence Given Rating 1.6

Occurrence Given Length Used 31.3
Occurrence Given Word Count 50

Set Size Given Rating 82.8
Set Size Given Length Used 25

Set Size Given Source 75
Set Size Given Author Location 75
Set Size Given Sentence Count 26.6

6.2.6 Results
Our combinatorial approach offers great im-
provements in comparison to our underper-
forming second-layer classifier, but the proc-
ess is also vastly more computationally expen-
sive. As a result, we were unable to attempt
optimizing all tags simultaneously, and the op-
timization for larger tag sets is less accurate
since we had to cut the optimization short due
to time constraints.

Table 6.2.6a shows the results of optimiz-
ing all 8 affinities simultaneously. For ease of
comparison, we include the previous results
for the maximum entropy classifier and the
best affinity result for the second-layer classi-
fier. While our performance on the negative
class decreases, the performance on positive
class more than makes up the difference.

Table 6.2.6a: Jointly Optimizing Affinities
Combinatorial Optimization Result

Class Precision Recall F-measure
Negative 91.3 95.0 93.1
Positive 55.0 40.3 46.6

Maximum Entropy Classifier Result
Class Precision Recall F-measure

Negative 94.2 99.0 96.6
Positive 55.6 17.2 26.2

Second-Layer Classifier Result
Class Precision Recall F-measure

Negative 89.8 93.4 91.6
Positive 48.8 37.1 42.2

For all other results in this section we lim-
ited our tag sets to consider only the 3 most
frequent affinities, 4 most frequent cons, and 7
most frequent pros. Most likely due to our
classifier's poor performance on cons and af-
finities in general, our combinatorial optimiza-
tion improved performance on pros the most
when only considering the pros by themselves.
Table 6.2.6b shows these results for optimiz-
ing the 7 most frequent pros as well as the
maximum entropy classifier's cumulative per-
formance on the 7 pros.

Table 6.2.6b: Jointly Optimizing Pros
Combinatorial Optimization Result

Class Precision Recall F-measure
Negative 93.2 89.8 91.5
Positive 71.3 79.5 75.2

Maximum Entropy Classifier Result
Class Precision Recall F-measure

Negative 91.5 92.0 91.8
Positive 74.4 73.1 73.7

Our combinatorial optimization performed
best on cons when considering the pros, cons,
and affinities together. Table 6.2.6c shows
these results. While the negative F-measure
decreases slightly, the positive F-measure in-
creases by 3 points.

Table 6.2.6c: Jointly Optimizing Pros,
Cons, and Affinities

Combinatorial Optimization Cons Result
Class Precision Recall F-measure

Negative 91.3 97.6 94.4
Positive 56.2 24.7 34.3

Maximum Entropy Classifier Cons Result
Class Precision Recall F-measure

Negative 91.0 98.2 94.5
Positive 59.6 21.2 31.3

[13]

7 Future Work
While we tried to cover as much ground as
possible, many avenues for improvement re-
main. One helpful study needed for the
evaluation process is a human study to see
how humans perform at making these tagging
decisions, especially in light of the difficult
data issues discussed in Section 3.2. We also
leveraged only rough textual features. More
improvements could be realized by using
phrase structure trees or dependency trees to
indentify which words modify other words,
heads of phrases, etc. We also made no ex-
plicit attempt to model negations, which are
important.

Additionally, we used Balie [12] for to-
kenization and sentence boundary detection.
Unfortunately, we found its performance to be
less than desirable as it always split words
with hyphens into separate words and made
odd decisions for many sentence boundaries.
Including better tokenization and sentence
segmentation algorithms would likely improve
overall performance.

Lastly, we spent all of our maximum en-
tropy classifier feature development time
studying only a few pro tags. This clearly re-
sulted in poor performance on cons and affini-
ties in comparison to pros. By dedicating addi-
tional time towards examining the specific dif-
ficulties in con and affinity tagging we believe
we can achieve much better performance,
which would also carry over to more substan-
tial improvements in our combinatorial opti-
mization algorithm because the con and affin-
ity information would be of higher quality.

8 Conclusions
In this paper we presented various methods for
assigning pro, con, and affinity tags to re-
views. Our approach is different from previ-
ous approaches in that we consider a fixed tag
lexicon for each tag type, which we believe is
more suitable to real-word applications as ag-
gregate data can more easily be presented to
users in comparison to extracting snippets of

text that contain a pro/con from each review.
Our maximum entropy classifier presents
strong performance over our baseline bag of
words Naïve Bayes classifier, with 75.2 nega-
tive class F-measure and 86.6 positive class F-
measure vs. the 44.2 negative class F-measure
and 83.2 positive class F-measure achieved by
the best performing preprocessing methods for
Naïve Bayes on the "Compact" tag. Our multi-
tag optimization methods show improvements
over the maximum entropy classifier, but are
limited by the relatively poor quality of the
maximum entropy classifier's con and affinity
probabilities. While we covered many tech-
niques and included many features in our
study, a vast amount of opportunities remain.

9 Acknowledgements
We thank Robert Chea and Joshua Greenough
of PowerReviews for the product review data,
Professor Manning for the insightful initial
discussions about our project, and Pichuan
Chang and Paul Baumstarck for constructing
the list of resources about various parsers,
taggers, and other NLP-related libraries. Todd
Sullivan is supported by an NDSEG Fellow-
ship sponsored by the DOD and AFOSR.

10 References
[1] Bo Pang , Lillian Lee and Shivakumar Vaithyana-

than, "Thumbs up? Sentiment Classification using
Machine Learning Techniques," Proceedings of
EMNLP 2002.

[2] Bo Pang and Lillian Lee, "A Sentimental Education:
Sentiment Analysis Using Subjectivity Summariza-
tion Based on Minimum Cuts," In Proceedings of
ACL 2004.

[3] Bo Pang and Lillian Lee, "Seeing stars: Exploiting
class relationships for sentiment categorization
with respect to rating scales," In Proceedings of
ACL 2005.

[4] Kim, S-M. and E.H. Hovy, "Automatic Identifica-
tion of Pro and Con Reasons in Online Reviews,"
Poster. Companion Proceedings of the conference
of the ACL, Sydney, Australia, 2006

[5] M.F. Porter, Snowball. http://snowball.tartarus.org
[6] Julie Beth Lovins, "Development of a stemming al-

gorithm," Mechanical Translation and Computa-
tional Linguistics, 1968 11:22-31.

[14]

[7] Ian H. Witten and Eibe Frank, "Data Mining: Prac-
tical machine learning tools and techniques", 2nd
Edition, Morgan Kaufmann, San Francisco, 2005.

[8] Chih-Chung Chang and Chih-Jen Lin, "LIBSVM : a
library for support vector machines," 2001.
Software available at
http://www.csie.ntu.edu.tw/~cjlin/libsvm

[9] C.-W. Hsu, C.-C. Chang, C.-J. Lin., "A practical
guide to support vector classification"
(http://www.csie.ntu.edu.tw/~cjlin/papers/guide/gu
ide.pdf)

[10] Christopher Manning and Dan Klein, "Optimiza-
tion, Maxent Models, and Conditional Estimation
without Magic," Tutorial at HLT-NAACL 2003
and ACL 2003.

[11] H. Cunningham, D. Maynard, K. Bontcheva, V.
Tablan, "GATE: A Framework and Graphical De-
velopment Environment for Robust NLP Tools and
Applications," Proceedings of the 40th Anniversary
Meeting of the Association for Computational Lin-
guistics (ACL'02). Philadelphia, July 2002.

[12] David Nadeau, "Bailie – Baseline Information Ex-
traction: Multilingual Information Extraction from
Text with Machine Learning and Natural Language
Techniques," 2005. (http://balie.sourceforge.net)

