
[1]

Production-Capable Extraction of Pros and Cons from Product Reviews

Todd Sullivan

Department of Computer Science
Stanford University

todd.sullivan@cs.stanford.edu

1 Introduction
Product reviews are now a key part of the pur-
chasing process for many consumers. With the
widespread availability of the internet, con-
sumers are increasingly using product reviews
to guide their purchasing decisions. Aside
from checking reviews at home before pur-
chasing online or going to a brick-and-mortar
store, smartphones such as the iPhone and
Android-powered devices are enabling con-
sumers to lookup product reviews on the spot
while in a store.

While reading reviews can certainly be
helpful, few consumers have time to sift
through all of the reviews available for a given
product. Aggregate information is far more
useful in this context than plain text reviews.
While the average rating is somewhat useful,
pros and cons for each review and the aggre-
gate counts of each pro and con on the product
level would provide consumers with an instant
snapshot of the product’s performance and
value.

In this paper, we describe a system for ex-
tracting pros and cons from review text that
achieves high precision for extracted tags and
successfully extracts tags from a reasonable
percentage of reviews. Our system uses part of
speech tags and dependency trees, as well as
information such as the companies and prod-
ucts in the category, which can be automati-
cally collected from Amazon and other web-
sites. In the next section we briefly describe
our previous work in this area and other re-
lated works. Section 3 describes our problem
definition and goals. Our data sources and the
pre-processing of these sources are covered in
Section 4. We then move to annotating review

text with entities, relationships between
words, and other important information in
Section 5. Section 6 details the core tag ex-
traction algorithm with its many heuristics for
eliminating erroneous extractions. We eva-
luate our system’s performance in several
product categories in Section 7, and finish
with a brief discussion of potential future ad-
ditions to the system.

2 Background
In our previous study [1], we explored several
methods for automatically tagging GPS device
reviews with pros and cons. Our product re-
view data was provided by PowerReviews,
which collects product reviews from consum-
ers and explicitly asks for pros and cons. The
user is given a selection of suggested pros and
cons for the category and also has the option
of typing in his or her own free-text tags. Our
previous study focused on predicting whether
the reviewer tagged the review with a particu-
lar pro or con based on the review’s rating, re-
viewer’s location, date/time of review submis-
sion, and the review’s comment text (i.e. we
built classifiers for each tag). While our tech-
niques showed promise, the dataset was ulti-
mately inadequate for the study because Po-
werReviews’ collection method caused re-
viewers to write about different topics in the
comment text than the pros and cons that they
had tagged before writing the comment.

There have been several somewhat suc-
cessful studies in the realm of predicting rat-
ings, or sentiment, expressed in review [2, 3].
Other work in extracting pros and cons found
that pros and cons occur in both factual and
opinion sentences [4].

[2]

3 Problem Definition
Our system is different from previous studies
in that we use dependency trees to extract spe-
cific pros and cons from reviews. We do not
use any machine learning techniques to pre-
dict if sentences or phrases are pros or cons.
Instead, we use the structure of the sentences,
along with a list of tags to be extracted and in-
formation about the product category such as
product names, company names, generic terms
for products in the category, etc., to extract
pros and cons from reviews.

As in our previous study, our data is pro-
vided by PowerReviews. The data consists of
reviews from the Automotive GPS and Dress
Shoes categories. For each category, we have
a list of companies and products in the catego-
ry. Each review is matched to a product and
contains a title and comment text. The dataset
contains reviews collected via the PowerRe-
views system (which we will reference as “PR
Reviews”) and reviews collected via other
systems (referenced as “Imported Reviews”).
The imported reviews come from multiple
sources such as Overstock.com, Best Buy, and
websites that use Bazaarvoice’s review collec-
tion system. The collection systems for im-
ported reviews do not ask the user for pros and
cons, and as a result tend to have longer com-
ments with more pro/con information to ex-
tract.

The PR reviews also have pros and cons as
free-text tags. We use these tags as a jump-
start for defining the tags that the system will
extract from each category. This process is de-
scribed in detail in Section 4.4.

The primary goal of our system is to ex-
tract pros and cons from a reasonable percen-
tage of reviews in any given category (at least
50% of reviews with extracted tags) with an
accuracy of at least 90% on extracted tags.
Hence, we deem high precision on extracted
tags to be much more important than high re-
call.

4 Knowledge Sources
In this section we describe our knowledge
sources and the preprocessing of these
sources. We use the Stanford Parser [5] on
product names, pro/con tags, and product re-
views to obtain part of speech tags, phrase
structure trees, and dependency trees [6]. We
also use the Stanford Parser’s stemming func-
tionality, which removes inflections but does
not remove derivational morphology.

4.1 Companies and Product Names
Our company data consists of a company
identifier along with a list of synonyms for the
company. The synonyms are the names that
each merchant using the PowerReviews col-
lection system uses to refer to the company.
For example, if Store1.com and Store2.com
both use PowerReviews’ collection system
and Store1.com refers to the company Garmin
as “Garmin” while Store2.com uses “Garmin
International”, then both of these names exist
in the company’s synonym list. We use this
data without any pre-processing to map words
and phrases in the review text to their respec-
tive company entities.

Similarly, our product data consists of a
product identifier along with a list of product
names for the company where each product
name is the name used by some merchant in
the PowerReviews system. The product data
requires light preprocessing before being used
in the system. Particularly, many products
have names that include additional informa-
tion such as screen size or color. These addi-
tional bits of information often occur after a
comma, colon, dash, parenthesis, or a preposi-
tion such as “for”. Thus for each product name
that contains one of the previously mentioned
items, we keep only the words occurring be-
fore the item.

Realizing that most consumers do not refer
to products by their full name, we extract all
possible n-grams from each product name and
use them as possible references to the product.
We use all n-grams with a length greater than

[3]

one, and only use unigrams that do not occur
in one of the following cases:

 a company name
 one or two digit number
 punctuation
 the word occurs in more than one

WordNet synset among noun, verb,
adverb, adjective, and adjective satel-
lite synset types

This method eliminates many problem
words that occur in multiple product names
such as “navigation”, “system”, and “device”.
It can also be used to find unigrams that are
generic terms for products in the category.
The method could also be taken further to
identify brands such as “Streetpilot” in the
GPS category, although we do not pursue this
route.

4.2 Word Synonyms
Word synonyms are simply lists of words that
for our intents and purposes have the same
meaning. Word synonym lists also include
common misspellings for important terms.
Table 4.2 lists our system’s word synonyms
and a sampling of their lists. Synonyms can be
single exact-match words or more complex
regular expressions. We opted for hand-
written lists over using WordNet or similar au-
tomatic synonym dictionaries because we aim
for high accuracy and we wish to include
many words in the lists that are not necessarily
exact synonyms with each other. Words that
are in the “unimportant adverbs” list are
treated as if they do exist in the review text.

4.3 Generic Entity Resolvers
As part of the review annotation process dis-
cussed in Section 5, we attempt to label words
by their entity types. To do this we use simple
word lists for each entity type. Table 4.3 de-
tails the generic entity resolvers for the Dress
Shoes category. The current and competing
indicators are used to determine, for example,
if a match for a generic product noun is refer-

ring to the current product or a competing
product.

Table 4.2: Word Synonym Lists
Meaning Example Words

good good, great, wonderful,
dandy, delicious, …

bad bad, horrible, woeful, poor,
torturous, unpleasant, …

comfortable comfortable, comfy, …
operate use, operate, operation

easy easy, elementary, effortless, …
difficult difficult, impossible, baffling, …

fast fast, speedy, quick, …
slow slow, sluggish, …
small small, tiny, miniature, …
large large, huge, gigantic, …

versatile various misspellings of versatile
unimportant

adverbs
very, rather, quite, still, already,
normally, honestly, highly, …

Table 4.3: Generic Entity Resolvers
for the Shoes Category

Entity Type Example Words
Reviewer Pronouns I, me, my, …
Reader Pronouns you, your, …

Other Person
Pronouns he, she, him, …

Other Person Nouns friend, relative, husband, …
It Pronouns it, itself, its, thing

Generic Product
Nouns shoe, slipper, loafer, …

Generic Company
Nouns company, brand, marque

Competing Indicators other, another, older, …
Current Indicators this, the

4.4 Tags
We use the pro/con tags in PR reviews as sug-
gestions for tags to extract for each category.
For a given category, we count the frequency
of each tag, sort the tags by frequency, and use
the frequent tags as hints for the tags to ex-
tract. We do not, for example, attempt to ex-
tract all tags that occur at least ten times in the
category because many users (and the Power-
Reviews system) use tags such as “Heel”,
which means “good heel” or “sturdy heel”
when in the pro section and “bad heel” or
“wobbly heel” when in the con section. The
word “heel” by itself is obviously not enough

[4]

information for our system to do anything
with.

Thus, for each category, we define a list of
pro and con tags to extract. Each tag has a list
of synonyms and optionally a link to an oppo-
site tag. The opposite tag is used in the case
that the current tag is extracted but it is deter-
mined to be negated.

Each tag synonym can be thought of as
another way to state the tag, but it is ultimate-
ly a list of words that together define a class of
phrases that potentially map to the tag. The er-
roneous phrases that are mapped by the list of
words are eliminated by the heuristics de-
scribed in the tag extraction process of Section
6. The words in each tag synonym are
processed with the Word Synonyms to, for
example, convert occurrences of “great” and
“awesome” to the word “good”.

5 Review Summarization
and Annotation

The review summarization and annotation
phase prepares each sentence in each review
for tag extraction. In order, we chunk nouns,
attach modifiers (adverbs, adjectives, nega-
tions, and quantities) to words, find sub-
jects/objects, resolve entities, and connect
each word in the sentence to an entity.

5.1 Noun Chunking
We chunk all nouns that are identified as
compound nouns in the sentence’s dependen-
cy tree. We also include numbers in the chunk
if they occur immediately to the right of any
proper noun. This step is fairly standard pro-
cedure.

5.2 Attaching Modifiers
We attach all adverbs, adjectives, negations,
and quantities to the words that they are af-
fecting. The majority of these modifiers are
identified simply by looking at the dependen-
cy tree. Due to the relatively poor quality of
sentences that most users generate while typ-
ing their comments, we include as negations

additional words that are not identified as ne-
gations in the dependency tree.

For each word, we take all advmod, dep,
det, and quantmod relations in the dependency
tree where the current word occurs as the par-
ent, as well as all advmod and dep relations
where the current word occurs as the child. If
the child word in the relation is “not” or “no”
and the child word comes before the parent
word in the sentence, then we attach the child
word as a negation modifier to the parent
word. Similarly, if the parent word is “not” or
“no” and the parent word comes before the
child word in the sentence, then we attach the
parent word as a negation modifier to the child
word. These simple additional modifiers cor-
rectly attach negations that the dependency
tree does not identify due to fragmented sen-
tences and other writing issues.

5.3 Finding Subjects and Objects
Similar to the modifier attachment phase, we
identify most subjects and objects simply by
looking at the various subject and object rela-
tions in the dependency tree. In fact, for direct
and indirect objects we solely include the
words occurring in the dobj and iobj relations
of the dependency tree.

For subjects, we include all subject rela-
tions in the dependency tree as well as others.
If the current word is a verb that is not in-
volved in any subject relation but is the child
in a cop relation, then the word’s subject is set
to the cop relations’ parent’s subject.

Adjectives that do not occur in a subject
relation or an amod relation are also marked
with a subject if they are the child in a dep re-
lation with a verb, noun, or adjective. If this is
the case, then the adjective’s subject is set to
the relation’s parent’s subject.

5.4 Resolving Entities
Resolving entities is a multistep process where
we use the company names, product names,
and generic entity resolvers to mark nouns as
the current product, competing product, cur-

[5]

rent company, competing company, reviewer,
reader, other person, or unknown.

First, we attempt to mark all nouns by
searching for matches in the various compa-
ny/brand/generic lists. Some matches, such as
a match in the generic product noun list, re-
quire additional checks. For example, when
coming across the noun “product”, if the noun
is involved in a dependency with any word in
the competing indicators list (such as “other”),
then the noun is marked as a competing prod-
uct.

After marking all nouns that match one of
our lists, we mark each sentence with a head
entity. While parsing the sentences, we use the
Stanford Parser’s head word marking functio-
nality to mark the head word of each phrase.
Each sentence’s head entity is the word that
has been marked as a current / competing
company or product that is closest to the root
of the sentence as dictated by the phrase struc-
ture tree. If no words in the sentence were
marked as current/competing company or
product, then the sentence’s head entity is as-
sumed to be the same as the previous sen-
tence’s head entity. If no words in the sen-
tence were marked and the sentence is the first
sentence in the review, then the head entity is
assumed to be the current product.

After marking each sentence with a head
entity, we resolve “it” and other similar words.
To resolve these words, we compare their po-
sition with the sentence’s head entity’s posi-
tion. If the “it” word occurs before the sen-
tence’s head entity, then we assign the “it”
word to the previous sentence’s head entity
type. If the “it” word occurs after the sen-
tence’s head entity, then we assign the “it”
word to the current sentence’s head entity
type.

5.5 Connecting Words to Entities
After resolving all of the entities, we deter-
mine if each word in each sentence is con-
nected to a competing company/product or the
current company/product.

5.5.1 Connecting to Competing Entities
A word is locally connected to a competing
entity if one of the following cases is true:

 The word itself is marked as a compet-
ing entity.

 The word has a subject, and the subject
is marked as a competing entity.

To determine if a word is connected to a com-
peting entity, we first check to see if it is lo-
cally connected to a competing entity. If it is
not locally connected, then we recursively fol-
low prepositions checking each word for a lo-
cal connection. If the current word is not con-
nected through prepositions to a competing
entity then we lastly perform the local check
on all words that are in a relation with the cur-
rent word in the dependency tree. If none of
these checks turns up a word that is locally
connected to a competing entity, then the cur-
rent word is not connected to a competing ent-
ity.

5.5.2 Connecting to Current Entities
The check for whether or not a word is con-
nected to a current entity is identical to the
competing check, except that we do not per-
form the recursive preposition check.

6 Tag Extraction
After summarizing and annotating each sen-
tence, we proceed with extracting tags. For
each tag we cycle through the tag synonyms
trying to find a match in the sentence for the
synonym. For a given tag synonym, such as
“Easy Controls”, we first check our Word
Synonyms for a synonym list for each word.
Thus we have two matchers: the Word Syn-
onym for “easy” and the exact string matcher
for “controls” (which is actually reduced to
“control” during the stemming process). We
take each matcher and find all of the words in
the sentence that match.

For each matcher in the tag synonym, at
least one word from the sentence must be a
match. Thus if the sentence contains a match
for “easy” but not for “controls” then the tag

[6]

synonym does not exist in the sentence. The
matching process does not require the same
part of speech tags, so the matcher for “easy”
will match adverbs such as “easily” or even
nouns if the word “easy” is parsed as part of a
compound noun.

After finding all of the words that match
each matcher, the system performs various
heuristic checks on each combination of the
words to determine if the set of words should
be extracted as the tag. For example, in the
sentence “I needed something easy, and this
has really simple controls”, both “easy” and
“simple” would match to the “easy” matcher
while “controls” would match with the “con-
trols” matcher. Thus the system would per-
form the heuristic checks (that we are about to
describe) on the pair (“easy”, “controls”) and
then on the pair (“simple”, “controls”).

Our heuristics are designed to eliminate as
many sets of matched words as possible that
should not be extracted as the given tag while
still accepting most correct sets. In the follow-
ing sections, “matched word” refers to a word
in the sentence that is a match for one of the
matchers.

6.1 Matched Words Must
Be Related

All matched words in the sentence must form
a connected graph in the dependency tree.
There are a few exceptions such as ignoring
ccomp, none, and prep_for relations in the de-
pendency tree and no two matched words can
exist in a conj_but relation. This obvious re-
quirement successfully eliminates matches
such as our previous example with the pair
(“easy”, “controls”) in the sentence “I needed
something easy, and this has really simple
controls”. In this example, “easy” and “con-
trols” do not share a dependency relation with
each other. Thus they do not form a connected
graph in the dependency tree and the pair of
words is rejected as a tag match.

6.2 No Connections to a Competing
Company or Product

None of the matched words can be connected
to a competing company or product within the
category (as determined by Section 5.5.1).

6.3 At Least One Connection to the
Current Company / Product

At least one of the matched words must be
connected to the current company or product
(as determined by Section 5.5.2). If none of
the matched words are connected to a current
entity, then the sentence’s head entity must be
marked as the current company or product. If
neither condition is satisfied, then the set of
matched words is rejected as a tag match.

6.4 Compound Nouns
If a matched word is part of a compound noun
and the entire compound noun is not in the
matched word set, then the tag match is re-
jected. This solves issues, for example, where
the reviewer says that the GPS device has
“good sound quality” and you are trying to ex-
tract the tag “High Quality”. While having
good sound quality increases the probability
of the product being of high quality, other fea-
tures of the product may be extremely poor.
Thus it is not safe to extract “High Quality”
from such a sentence. It is important to note
that often “sound” in “sound quality” will be
parsed as an adjective modifying the noun
“quality”, but in many cases due to capitaliza-
tion and non-standard sentence structures, it
will be parsed as a compound noun as pre-
sented here. Potential tag matches that are re-
jected solely due to this heuristic can be ag-
gregated and presented to the system’s opera-
tor as suggestions for new tags to extract, but
we do not detail the process here.

6.5 Modifying Adjectives
If a matched word is a noun and it has a mod-
ifying adjective that is not a matched word,
then the tag match is rejected. This eliminates
potential problems where an adjective that is

[7]

not a matched word could completely change
the meaning of the phrase. It also solves simi-
lar problems as in the compound noun section
such as trying to extract “High Quality” when
the text includes “good sound quality”.

6.6 Matched Noun Dependent of
Non-Matched Adjective

If a matched word is a noun and it is in a dep
relation with an adjective that is not a matched
word, then the tag match is rejected. This heu-
ristic is similar to the modifying adjective heu-
ristic of Section 6.5. It basically applies the
same restriction for relations involving adjec-
tives that the parser could only say was some
kind of dependency, but the parser could not
definitively say that it was a modifying adjec-
tive of the word.

6.7 Single Noun in prep_for
If the matched word set consists of a single
noun that is in a prep_for relation, then the tag
match is rejected. This heuristic solves, for
example, the problem of extracting the tag
synonym “comfort” from the sentence “Bad
for comfort” since the matched word “com-
fort” is involved in a prep_for with another
word. Unfortunately, this also rejects many
perfectly reasonable tag matches such as with
the sentence “Great for comfort”, but many of
these lost tag matches can be easily recovered
by including a tag synonym such as “good
comfort”.

6.8 Matched Adjectives Modifying
Non-matched Words

If a matched word is an adjective and it is
modifying a non-matched word or its subject
is a non-matched word then the non-matched
word’s entity type must be the current compa-
ny/product or unknown. Otherwise the tag
match is rejected.

6.9 Appear, Suppose, Should,
Could, and Would

Appear, suppose, should, could, and would are
difficult words to process. Each can be used to
describe how the product performed or how
the product should have performed. For ex-
ample, a reviewer might say that the product
was “supposed to be easy to operate”. This
could be followed by both “but I found it chal-
lenging”, or “and it definitely was”. One
might think that a good heuristic for this par-
ticular example is the use of “but” versus
“and”, but empirically this potential heuristic
does not succeed for our dataset. Determining
computationally whether the person meant
“easy to operate” or its negation requires addi-
tional semantic computation of the sentence
that is more complex that it is worth. Instead,
we simply throw out all sentences where a
matched word is directly connected in the de-
pendency tree to appear, suppose, should,
could, or would.

6.10 Negations
Identifying negations accurately is essential
for our system. If a set of matched words have
passed all other heuristics, the particular tag or
its opposite will be extracted from the sen-
tence. If the system does not catch a negation
or identifies a negation when one does not ex-
ist then the exact opposite of the reviewer’s
true meaning is extracted, which is arguably
worse than not extracting anything at all.

For each matched word we count the
number of negations that apply to it. First, we
count the number of local negations. A local
negation exists if the matched word is the par-
ent word in a neg relation in the dependency
tree, or if the matched word is in a relation
with words such as “no”, “not”, or “never”
(which are not always classed as a neg relation
in the dependency tree due to parsing issues
and incomplete sentences). A word is also lo-
cally negated if it is in a mark relation with the
word “if” in the dependency tree. This covers
statements such as, “Would be great if it fit

[8]

the child's head” while extracting the tag
“Good Fit”.

After counting local negations we add any
local negations of adjective or adverbial mod-
ifiers to the count. We also follow all acomp,
xcomp, ccomp, and prep_for relations with the
matched word as a child and include the rela-
tion’s parent’s local negation count in the cur-
rent matched word’s total negation count. For
example, following the acomp relation suc-
cessfully applies the “not” negation to “com-
fortable” in the sentence “It does not feel com-
fortable.” In this sentence “not” applies to the
word “feel”, which is the parent of an acomp
relation with “comfortable”.

Similarly, following xcomp relations suc-
cessfully includes the negation in the sentence
“I would not call these shoes comfortable”
where “call” is in an xcomp relation with
“comfortable”. Following ccomp relations
catches sentences such as “I do not think that
it is comfortable”, but a few extra restrictions
must be imposed for ccomp relations with
parent words such as “believe” in the sentence
“I cannot believe how comfortable this is”.

After counting all negations that apply to
the matched word, the word is determined to
be negated if the negation count is an odd
number. If any of the words is negated and the
tag synonym itself is not negated then the op-
posite of the tag is extracted. Similarly, if
none of the matched words are negated but the
tag synonym is negated then the opposite tag
is extracted. Otherwise, the current tag is ex-
tracted.

6.11 Tags Inside Other Tags
After attempting to extract each tag from a re-
view, we perform one final tag elimination
heuristic. The system up to this point is capa-
ble of extracting multiple tags from the same
set of words. For example, the Puzzle category
might have the tags “Easy to Assemble” and
“Simple”. If a review contains the sentence
“This is easy to assemble”, the system will ex-
tract both tags, which for most purposes is un-

desirable. To solve this issue we throw out any
tag whose matched words are a strict subset of
another tag’s matched words.

7 System Performance
To evaluate the performance of our system we
extracted tags from all reviews in the Automo-
tive GPS and Dress Shoes categories of Buz-
zillions.com. Table 7a summarizes the data
from both categories while Table 7b/c summa-
rizes the results. We used 88 tags for extrac-
tion in the GPS category and 133 in the shoe
category. As shown in Table 7a, the GPS cat-
egory’s PR reviews contain twice as many us-
er-generated tags as the shoe category’s PR
reviews. The vast majority of PR reviews
(around 98%) contain user-generated tags.

Table 7a: Dataset Description
 GPS Shoes

Imported Reviews 1,039 9,860
PowerReviews Reviews 3,278 7,666
Average number of user-
generated tags in a PR re-

view
6.19 3.12

Percent of PR reviews
with user-generated tags 98.78% 97.93%

Pros used for extraction 43 60
Cons used for extraction 45 73

Table 7b shows metrics most closely re-
lated to the traditional recall metric in natural
language processing. We see that in both cate-
gories, more tags are extracted from imported
reviews than PR reviews. This is most likely
because the imported reviews were generally
longer since the user did not have to input us-
er-generated tags before writing the review.

Our system was able to extract more than
twice as many tags per review from the shoe
category, but the shoe category also had twice
as many extracted tags that already existed as
user-generated tags. This was in part due to
using more tags for extraction in the shoe cat-
egory and because the GPS category’s tags
were often more complex such as “Acquires
Satellites Quickly” and “Complicated Con-
trols” while most of the shoe tags were

[9]

straightforward such as “Cute”, “Too Tight”,
and “Fashionable”.

An important note in Table 7b is that for
both categories less than 30% of the tags ex-
tracted from PR reviews already existed as us-
er-generated tags. This shows that the system
can produce substantial positive results even
when processing reviews where the reviewer
is explicitly asked to input pro and con tags
during the review writing process.

Table 7b: Recall Results
 Imported PowerReviews
 GPS Shoes GPS Shoes

Average num-
ber of extracted
tags per review

0.69 2.13 0.68 1.46

Percent of re-
views with ex-

tracted tags
47.5% 89.9% 44.0% 77.6%

Percent of ex-
tracted tags that
already existed

as user-
generated tags

0% 0% 15.9% 28.0%

Table 7c shows the precision of the ex-

tracted tags for each category. Due to resource
constraints, we were unable to hand-evaluate
every extracted tag. Instead, we evaluated a
subset of each category by randomly sampling
the extracted tags. Our system performed well
on both categories, achieving around 95 ± 2%.

Table 7c: Precision Results
 GPS Shoes

Precision 94.77% 95.45%
Margin of error at
95% confidence 2.13% 2.05%

8 Conclusion
In this paper we have described a production-
capable system for extracting pros and cons
from product reviews. The system draws upon
many sources of data for product/company
names, word synonyms, and tags to extract.
Many of these data sources, such as product
names, can be automatically compiled from
websites such as Amazon.com. Other data

sources, such as the tags to be extracted from
each category, require hand tailoring. Combin-
ing these data sources, the parsed dependency
trees of the review text, and our tag extraction
heuristics, our system is capable of automati-
cally extracting highly accurate (~95%) pros
and cons with a reasonable recall rate (up to
90% in some categories). Our system is also
capable of extracting additional tags from re-
views where the user explicitly chose pro/con
tags during the review writing process, with
70% or more of tags extracted from the review
text of such reviews being new tags.

9 Acknowledgements
We thank Robert Chea and the rest of the en-
gineering team at PowerReviews for the prod-
uct review data and computational resources
for running our experiments. Todd Sullivan is
supported by an NDSEG Fellowship spon-
sored by the DOD and AFOSR.

10 References
[1] Todd Sullivan, “Pro, Con, and Affinity Tagging of

Product Reviews,” Stanford CS 224n.
http://www.daysignmedia.com/research/graduate/
nlp/product-reviews

[2] Bo Pang , Lillian Lee and Shivakumar Vaithyana-
than, "Thumbs up? Sentiment Classification using
Machine Learning Techniques," Proceedings of
EMNLP 2002.

[3] Bo Pang and Lillian Lee, "A Sentimental Education:
Sentiment Analysis Using Subjectivity Summariza-
tion Based on Minimum Cuts," In Proceedings of
ACL 2004.

[4] Kim, S-M. and E. H. Hovy, “Automatic Identifica-
tion of Pro and Con Reasons in Online Reviews,”
Poster. Companion Proceedings of the Conference
of the ACL, Sydney, Australia, 2006.

[5] Dan Klein and Christopher D. Manning, “Fast Exact
Inference with a Factored Model for Natural Lan-
guage Parsing,” In Advances in Neural Information
Processing Systems 15 (NIPS 2002), Cambridge,
MA: MIT Press, pp. 3-10.

[6] Marie-Catherine de Marneffe, Bill MacCartney and
Christopher D. Manning, “Generating Typed De-
pendency Parses from Phrase Structure Parses,”
In LREC 2006.

