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1 Introduction 
Product reviews are now a key part of the pur-
chasing process for many consumers. With the 
widespread availability of the internet, con-
sumers are increasingly using product reviews 
to guide their purchasing decisions. Aside 
from checking reviews at home before pur-
chasing online or going to a brick-and-mortar 
store, smartphones such as the iPhone and 
Android-powered devices are enabling con-
sumers to lookup product reviews on the spot 
while in a store. 

While reading reviews can certainly be 
helpful, few consumers have time to sift 
through all of the reviews available for a given 
product. Aggregate information is far more 
useful in this context than plain text reviews. 
While the average rating is somewhat useful, 
pros and cons for each review and the aggre-
gate counts of each pro and con on the product 
level would provide consumers with an instant 
snapshot of the product’s performance and 
value. 

In this paper, we describe a system for ex-
tracting pros and cons from review text that 
achieves high precision for extracted tags and 
successfully extracts tags from a reasonable 
percentage of reviews. Our system uses part of 
speech tags and dependency trees, as well as 
information such as the companies and prod-
ucts in the category, which can be automati-
cally collected from Amazon and other web-
sites. In the next section we briefly describe 
our previous work in this area and other re-
lated works. Section 3 describes our problem 
definition and goals. Our data sources and the 
pre-processing of these sources are covered in 
Section 4. We then move to annotating review 

text with entities, relationships between 
words, and other important information in 
Section 5. Section 6 details the core tag ex-
traction algorithm with its many heuristics for 
eliminating erroneous extractions. We eva-
luate our system’s performance in several 
product categories in Section 7, and finish 
with a brief discussion of potential future ad-
ditions to the system. 

2 Background 
In our previous study [1], we explored several 
methods for automatically tagging GPS device 
reviews with pros and cons. Our product re-
view data was provided by PowerReviews, 
which collects product reviews from consum-
ers and explicitly asks for pros and cons. The 
user is given a selection of suggested pros and 
cons for the category and also has the option 
of typing in his or her own free-text tags. Our 
previous study focused on predicting whether 
the reviewer tagged the review with a particu-
lar pro or con based on the review’s rating, re-
viewer’s location, date/time of review submis-
sion, and the review’s comment text (i.e. we 
built classifiers for each tag). While our tech-
niques showed promise, the dataset was ulti-
mately inadequate for the study because Po-
werReviews’ collection method caused re-
viewers to write about different topics in the 
comment text than the pros and cons that they 
had tagged before writing the comment. 

There have been several somewhat suc-
cessful studies in the realm of predicting rat-
ings, or sentiment, expressed in review [2, 3]. 
Other work in extracting pros and cons found 
that pros and cons occur in both factual and 
opinion sentences [4]. 
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3 Problem Definition 
Our system is different from previous studies 
in that we use dependency trees to extract spe-
cific pros and cons from reviews. We do not 
use any machine learning techniques to pre-
dict if sentences or phrases are pros or cons. 
Instead, we use the structure of the sentences, 
along with a list of tags to be extracted and in-
formation about the product category such as 
product names, company names, generic terms 
for products in the category, etc., to extract 
pros and cons from reviews. 

As in our previous study, our data is pro-
vided by PowerReviews. The data consists of 
reviews from the Automotive GPS and Dress 
Shoes categories. For each category, we have 
a list of companies and products in the catego-
ry. Each review is matched to a product and 
contains a title and comment text. The dataset 
contains reviews collected via the PowerRe-
views system (which we will reference as “PR 
Reviews”) and reviews collected via other 
systems (referenced as “Imported Reviews”). 
The imported reviews come from multiple 
sources such as Overstock.com, Best Buy, and 
websites that use Bazaarvoice’s review collec-
tion system. The collection systems for im-
ported reviews do not ask the user for pros and 
cons, and as a result tend to have longer com-
ments with more pro/con information to ex-
tract. 

The PR reviews also have pros and cons as 
free-text tags. We use these tags as a jump-
start for defining the tags that the system will 
extract from each category. This process is de-
scribed in detail in Section 4.4. 

The primary goal of our system is to ex-
tract pros and cons from a reasonable percen-
tage of reviews in any given category (at least 
50% of reviews with extracted tags) with an 
accuracy of at least 90% on extracted tags. 
Hence, we deem high precision on extracted 
tags to be much more important than high re-
call. 

4 Knowledge Sources 
In this section we describe our knowledge 
sources and the preprocessing of these 
sources. We use the Stanford Parser [5] on 
product names, pro/con tags, and product re-
views to obtain part of speech tags, phrase 
structure trees, and dependency trees [6]. We 
also use the Stanford Parser’s stemming func-
tionality, which removes inflections but does 
not remove derivational morphology. 

4.1 Companies and Product Names 
Our company data consists of a company 
identifier along with a list of synonyms for the 
company. The synonyms are the names that 
each merchant using the PowerReviews col-
lection system uses to refer to the company. 
For example, if Store1.com and Store2.com 
both use PowerReviews’ collection system 
and Store1.com refers to the company Garmin 
as “Garmin” while Store2.com uses “Garmin 
International”, then both of these names exist 
in the company’s synonym list. We use this 
data without any pre-processing to map words 
and phrases in the review text to their respec-
tive company entities. 

Similarly, our product data consists of a 
product identifier along with a list of product 
names for the company where each product 
name is the name used by some merchant in 
the PowerReviews system. The product data 
requires light preprocessing before being used 
in the system. Particularly, many products 
have names that include additional informa-
tion such as screen size or color. These addi-
tional bits of information often occur after a 
comma, colon, dash, parenthesis, or a preposi-
tion such as “for”. Thus for each product name 
that contains one of the previously mentioned 
items, we keep only the words occurring be-
fore the item. 

Realizing that most consumers do not refer 
to products by their full name, we extract all 
possible n-grams from each product name and 
use them as possible references to the product. 
We use all n-grams with a length greater than 
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one, and only use unigrams that do not occur 
in one of the following cases: 

 a company name 
 one or two digit number 
 punctuation 
 the word occurs in more than one 

WordNet synset among noun, verb, 
adverb, adjective, and adjective satel-
lite synset types 

This method eliminates many problem 
words that occur in multiple product names 
such as “navigation”, “system”, and “device”. 
It can also be used to find unigrams that are 
generic terms for products in the category. 
The method could also be taken further to 
identify brands such as “Streetpilot” in the 
GPS category, although we do not pursue this 
route. 

4.2 Word Synonyms 
Word synonyms are simply lists of words that 
for our intents and purposes have the same 
meaning. Word synonym lists also include 
common misspellings for important terms. 
Table 4.2 lists our system’s word synonyms 
and a sampling of their lists. Synonyms can be 
single exact-match words or more complex 
regular expressions. We opted for hand-
written lists over using WordNet or similar au-
tomatic synonym dictionaries because we aim 
for high accuracy and we wish to include 
many words in the lists that are not necessarily 
exact synonyms with each other. Words that 
are in the “unimportant adverbs” list are 
treated as if they do exist in the review text. 

4.3 Generic Entity Resolvers 
As part of the review annotation process dis-
cussed in Section 5, we attempt to label words 
by their entity types. To do this we use simple 
word lists for each entity type. Table 4.3 de-
tails the generic entity resolvers for the Dress 
Shoes category. The current and competing 
indicators are used to determine, for example, 
if a match for a generic product noun is refer-

ring to the current product or a competing 
product. 
 

Table 4.2: Word Synonym Lists 
Meaning Example Words 

good good, great, wonderful, 
dandy, delicious, … 

bad bad, horrible, woeful, poor, 
torturous, unpleasant, … 

comfortable comfortable, comfy, … 
operate use, operate, operation 

easy easy, elementary, effortless, … 
difficult difficult, impossible, baffling, … 

fast fast, speedy, quick, … 
slow slow, sluggish, … 
small small, tiny, miniature, … 
large large, huge, gigantic, … 

versatile various misspellings of versatile 
unimportant 

adverbs 
very, rather, quite, still, already, 
normally, honestly, highly, … 

 

Table 4.3: Generic Entity Resolvers 
for the Shoes Category 

Entity Type Example Words 
Reviewer Pronouns I, me, my, … 
Reader Pronouns you, your, … 

Other Person 
Pronouns he, she, him, … 

Other Person Nouns friend, relative, husband, … 
It Pronouns it, itself, its, thing 

Generic Product 
Nouns shoe, slipper, loafer, … 

Generic Company 
Nouns company, brand, marque 

Competing Indicators other, another, older, … 
Current Indicators this, the 

4.4 Tags 
We use the pro/con tags in PR reviews as sug-
gestions for tags to extract for each category. 
For a given category, we count the frequency 
of each tag, sort the tags by frequency, and use 
the frequent tags as hints for the tags to ex-
tract. We do not, for example, attempt to ex-
tract all tags that occur at least ten times in the 
category because many users (and the Power-
Reviews system) use tags such as “Heel”, 
which means “good heel” or “sturdy heel” 
when in the pro section and “bad heel” or 
“wobbly heel” when in the con section. The 
word “heel” by itself is obviously not enough 
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information for our system to do anything 
with. 

Thus, for each category, we define a list of 
pro and con tags to extract. Each tag has a list 
of synonyms and optionally a link to an oppo-
site tag. The opposite tag is used in the case 
that the current tag is extracted but it is deter-
mined to be negated. 

Each tag synonym can be thought of as 
another way to state the tag, but it is ultimate-
ly a list of words that together define a class of 
phrases that potentially map to the tag. The er-
roneous phrases that are mapped by the list of 
words are eliminated by the heuristics de-
scribed in the tag extraction process of Section 
6. The words in each tag synonym are 
processed with the Word Synonyms to, for 
example, convert occurrences of “great” and 
“awesome” to the word “good”. 

5 Review Summarization 
and Annotation 

The review summarization and annotation 
phase prepares each sentence in each review 
for tag extraction. In order, we chunk nouns, 
attach modifiers (adverbs, adjectives, nega-
tions, and quantities) to words, find sub-
jects/objects, resolve entities, and connect 
each word in the sentence to an entity. 

5.1 Noun Chunking 
We chunk all nouns that are identified as 
compound nouns in the sentence’s dependen-
cy tree. We also include numbers in the chunk 
if they occur immediately to the right of any 
proper noun. This step is fairly standard pro-
cedure. 

5.2 Attaching Modifiers 
We attach all adverbs, adjectives, negations, 
and quantities to the words that they are af-
fecting. The majority of these modifiers are 
identified simply by looking at the dependen-
cy tree. Due to the relatively poor quality of 
sentences that most users generate while typ-
ing their comments, we include as negations 

additional words that are not identified as ne-
gations in the dependency tree. 

For each word, we take all advmod, dep, 
det, and quantmod relations in the dependency 
tree where the current word occurs as the par-
ent, as well as all advmod and dep relations 
where the current word occurs as the child. If 
the child word in the relation is “not” or “no” 
and the child word comes before the parent 
word in the sentence, then we attach the child 
word as a negation modifier to the parent 
word. Similarly, if the parent word is “not” or 
“no” and the parent word comes before the 
child word in the sentence, then we attach the 
parent word as a negation modifier to the child 
word. These simple additional modifiers cor-
rectly attach negations that the dependency 
tree does not identify due to fragmented sen-
tences and other writing issues. 

5.3 Finding Subjects and Objects 
Similar to the modifier attachment phase, we 
identify most subjects and objects simply by 
looking at the various subject and object rela-
tions in the dependency tree. In fact, for direct 
and indirect objects we solely include the 
words occurring in the dobj and iobj relations 
of the dependency tree. 

For subjects, we include all subject rela-
tions in the dependency tree as well as others. 
If the current word is a verb that is not in-
volved in any subject relation but is the child 
in a cop relation, then the word’s subject is set 
to the cop relations’ parent’s subject. 

Adjectives that do not occur in a subject 
relation or an amod relation are also marked 
with a subject if they are the child in a dep re-
lation with a verb, noun, or adjective. If this is 
the case, then the adjective’s subject is set to 
the relation’s parent’s subject. 

5.4 Resolving Entities 
Resolving entities is a multistep process where 
we use the company names, product names, 
and generic entity resolvers to mark nouns as 
the current product, competing product, cur-
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rent company, competing company, reviewer, 
reader, other person, or unknown. 

First, we attempt to mark all nouns by 
searching for matches in the various compa-
ny/brand/generic lists. Some matches, such as 
a match in the generic product noun list, re-
quire additional checks. For example, when 
coming across the noun “product”, if the noun 
is involved in a dependency with any word in 
the competing indicators list (such as “other”), 
then the noun is marked as a competing prod-
uct. 

After marking all nouns that match one of 
our lists, we mark each sentence with a head 
entity. While parsing the sentences, we use the 
Stanford Parser’s head word marking functio-
nality to mark the head word of each phrase. 
Each sentence’s head entity is the word that 
has been marked as a current / competing 
company or product that is closest to the root 
of the sentence as dictated by the phrase struc-
ture tree. If no words in the sentence were 
marked as current/competing company or 
product, then the sentence’s head entity is as-
sumed to be the same as the previous sen-
tence’s head entity. If no words in the sen-
tence were marked and the sentence is the first 
sentence in the review, then the head entity is 
assumed to be the current product. 

After marking each sentence with a head 
entity, we resolve “it” and other similar words. 
To resolve these words, we compare their po-
sition with the sentence’s head entity’s posi-
tion. If the “it” word occurs before the sen-
tence’s head entity, then we assign the “it” 
word to the previous sentence’s head entity 
type. If the “it” word occurs after the sen-
tence’s head entity, then we assign the “it” 
word to the current sentence’s head entity 
type. 

5.5 Connecting Words to Entities 
After resolving all of the entities, we deter-
mine if each word in each sentence is con-
nected to a competing company/product or the 
current company/product. 

5.5.1 Connecting to Competing Entities 
A word is locally connected to a competing 
entity if one of the following cases is true: 

 The word itself is marked as a compet-
ing entity. 

 The word has a subject, and the subject 
is marked as a competing entity. 

To determine if a word is connected to a com-
peting entity, we first check to see if it is lo-
cally connected to a competing entity. If it is 
not locally connected, then we recursively fol-
low prepositions checking each word for a lo-
cal connection. If the current word is not con-
nected through prepositions to a competing 
entity then we lastly perform the local check 
on all words that are in a relation with the cur-
rent word in the dependency tree. If none of 
these checks turns up a word that is locally 
connected to a competing entity, then the cur-
rent word is not connected to a competing ent-
ity. 

5.5.2 Connecting to Current Entities 
The check for whether or not a word is con-
nected to a current entity is identical to the 
competing check, except that we do not per-
form the recursive preposition check. 

6 Tag Extraction 
After summarizing and annotating each sen-
tence, we proceed with extracting tags. For 
each tag we cycle through the tag synonyms 
trying to find a match in the sentence for the 
synonym. For a given tag synonym, such as 
“Easy Controls”, we first check our Word 
Synonyms for a synonym list for each word. 
Thus we have two matchers: the Word Syn-
onym for “easy” and the exact string matcher 
for “controls” (which is actually reduced to 
“control” during the stemming process). We 
take each matcher and find all of the words in 
the sentence that match. 

For each matcher in the tag synonym, at 
least one word from the sentence must be a 
match. Thus if the sentence contains a match 
for “easy” but not for “controls” then the tag 
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synonym does not exist in the sentence. The 
matching process does not require the same 
part of speech tags, so the matcher for “easy” 
will match adverbs such as “easily” or even 
nouns if the word “easy” is parsed as part of a 
compound noun. 

After finding all of the words that match 
each matcher, the system performs various 
heuristic checks on each combination of the 
words to determine if the set of words should 
be extracted as the tag. For example, in the 
sentence “I needed something easy, and this 
has really simple controls”, both “easy” and 
“simple” would match to the “easy” matcher 
while “controls” would match with the “con-
trols” matcher. Thus the system would per-
form the heuristic checks (that we are about to 
describe) on the pair (“easy”, “controls”) and 
then on the pair (“simple”, “controls”). 

Our heuristics are designed to eliminate as 
many sets of matched words as possible that 
should not be extracted as the given tag while 
still accepting most correct sets. In the follow-
ing sections, “matched word” refers to a word 
in the sentence that is a match for one of the 
matchers. 

6.1 Matched Words Must 
Be Related 

All matched words in the sentence must form 
a connected graph in the dependency tree. 
There are a few exceptions such as ignoring 
ccomp, none, and prep_for relations in the de-
pendency tree and no two matched words can 
exist in a conj_but relation. This obvious re-
quirement successfully eliminates matches 
such as our previous example with the pair 
(“easy”, “controls”) in the sentence “I needed 
something easy, and this has really simple 
controls”. In this example, “easy” and “con-
trols” do not share a dependency relation with 
each other. Thus they do not form a connected 
graph in the dependency tree and the pair of 
words is rejected as a tag match. 

6.2 No Connections to a Competing 
Company or Product 

None of the matched words can be connected 
to a competing company or product within the 
category (as determined by Section 5.5.1). 

6.3 At Least One Connection to the 
Current Company / Product 

At least one of the matched words must be 
connected to the current company or product 
(as determined by Section 5.5.2). If none of 
the matched words are connected to a current 
entity, then the sentence’s head entity must be 
marked as the current company or product. If 
neither condition is satisfied, then the set of 
matched words is rejected as a tag match. 

6.4 Compound Nouns 
If a matched word is part of a compound noun 
and the entire compound noun is not in the 
matched word set, then the tag match is re-
jected. This solves issues, for example, where 
the reviewer says that the GPS device has 
“good sound quality” and you are trying to ex-
tract the tag “High Quality”. While having 
good sound quality increases the probability 
of the product being of high quality, other fea-
tures of the product may be extremely poor. 
Thus it is not safe to extract “High Quality” 
from such a sentence. It is important to note 
that often “sound” in “sound quality” will be 
parsed as an adjective modifying the noun 
“quality”, but in many cases due to capitaliza-
tion and non-standard sentence structures, it 
will be parsed as a compound noun as pre-
sented here. Potential tag matches that are re-
jected solely due to this heuristic can be ag-
gregated and presented to the system’s opera-
tor as suggestions for new tags to extract, but 
we do not detail the process here. 

6.5 Modifying Adjectives 
If a matched word is a noun and it has a mod-
ifying adjective that is not a matched word, 
then the tag match is rejected. This eliminates 
potential problems where an adjective that is 
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not a matched word could completely change 
the meaning of the phrase. It also solves simi-
lar problems as in the compound noun section 
such as trying to extract “High Quality” when 
the text includes “good sound quality”. 

6.6 Matched Noun Dependent of 
Non-Matched Adjective 

If a matched word is a noun and it is in a dep 
relation with an adjective that is not a matched 
word, then the tag match is rejected. This heu-
ristic is similar to the modifying adjective heu-
ristic of Section 6.5. It basically applies the 
same restriction for relations involving adjec-
tives that the parser could only say was some 
kind of dependency, but the parser could not 
definitively say that it was a modifying adjec-
tive of the word. 

6.7 Single Noun in prep_for 
If the matched word set consists of a single 
noun that is in a prep_for relation, then the tag 
match is rejected. This heuristic solves, for 
example, the problem of extracting the tag 
synonym “comfort” from the sentence “Bad 
for comfort” since the matched word “com-
fort” is involved in a prep_for with another 
word. Unfortunately, this also rejects many 
perfectly reasonable tag matches such as with 
the sentence “Great for comfort”, but many of 
these lost tag matches can be easily recovered 
by including a tag synonym such as “good 
comfort”. 

6.8 Matched Adjectives Modifying 
Non-matched Words 

If a matched word is an adjective and it is 
modifying a non-matched word or its subject 
is a non-matched word then the non-matched 
word’s entity type must be the current compa-
ny/product or unknown. Otherwise the tag 
match is rejected. 

6.9 Appear, Suppose, Should, 
Could, and Would 

Appear, suppose, should, could, and would are 
difficult words to process. Each can be used to 
describe how the product performed or how 
the product should have performed. For ex-
ample, a reviewer might say that the product 
was “supposed to be easy to operate”. This 
could be followed by both “but I found it chal-
lenging”, or “and it definitely was”. One 
might think that a good heuristic for this par-
ticular example is the use of “but” versus 
“and”, but empirically this potential heuristic 
does not succeed for our dataset. Determining 
computationally whether the person meant 
“easy to operate” or its negation requires addi-
tional semantic computation of the sentence 
that is more complex that it is worth. Instead, 
we simply throw out all sentences where a 
matched word is directly connected in the de-
pendency tree to appear, suppose, should, 
could, or would. 

6.10 Negations 
Identifying negations accurately is essential 
for our system. If a set of matched words have 
passed all other heuristics, the particular tag or 
its opposite will be extracted from the sen-
tence. If the system does not catch a negation 
or identifies a negation when one does not ex-
ist then the exact opposite of the reviewer’s 
true meaning is extracted, which is arguably 
worse than not extracting anything at all. 

For each matched word we count the 
number of negations that apply to it. First, we 
count the number of local negations. A local 
negation exists if the matched word is the par-
ent word in a neg relation in the dependency 
tree, or if the matched word is in a relation 
with words such as “no”, “not”, or “never” 
(which are not always classed as a neg relation 
in the dependency tree due to parsing issues 
and incomplete sentences). A word is also lo-
cally negated if it is in a mark relation with the 
word “if” in the dependency tree. This covers 
statements such as, “Would be great if it fit 
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the child's head” while extracting the tag 
“Good Fit”. 

After counting local negations we add any 
local negations of adjective or adverbial mod-
ifiers to the count. We also follow all acomp, 
xcomp, ccomp, and prep_for relations with the 
matched word as a child and include the rela-
tion’s parent’s local negation count in the cur-
rent matched word’s total negation count. For 
example, following the acomp relation suc-
cessfully applies the “not” negation to “com-
fortable” in the sentence “It does not feel com-
fortable.” In this sentence “not” applies to the 
word “feel”, which is the parent of an acomp 
relation with “comfortable”. 

Similarly, following xcomp relations suc-
cessfully includes the negation in the sentence 
“I would not call these shoes comfortable” 
where “call” is in an xcomp relation with 
“comfortable”. Following ccomp relations 
catches sentences such as “I do not think that 
it is comfortable”, but a few extra restrictions 
must be imposed for ccomp relations with 
parent words such as “believe” in the sentence 
“I cannot believe how comfortable this is”. 

After counting all negations that apply to 
the matched word, the word is determined to 
be negated if the negation count is an odd 
number. If any of the words is negated and the 
tag synonym itself is not negated then the op-
posite of the tag is extracted. Similarly, if 
none of the matched words are negated but the 
tag synonym is negated then the opposite tag 
is extracted. Otherwise, the current tag is ex-
tracted. 

6.11 Tags Inside Other Tags 
After attempting to extract each tag from a re-
view, we perform one final tag elimination 
heuristic. The system up to this point is capa-
ble of extracting multiple tags from the same 
set of words. For example, the Puzzle category 
might have the tags “Easy to Assemble” and 
“Simple”. If a review contains the sentence 
“This is easy to assemble”, the system will ex-
tract both tags, which for most purposes is un-

desirable. To solve this issue we throw out any 
tag whose matched words are a strict subset of 
another tag’s matched words. 

7 System Performance 
To evaluate the performance of our system we 
extracted tags from all reviews in the Automo-
tive GPS and Dress Shoes categories of Buz-
zillions.com. Table 7a summarizes the data 
from both categories while Table 7b/c summa-
rizes the results. We used 88 tags for extrac-
tion in the GPS category and 133 in the shoe 
category. As shown in Table 7a, the GPS cat-
egory’s PR reviews contain twice as many us-
er-generated tags as the shoe category’s PR 
reviews. The vast majority of PR reviews 
(around 98%) contain user-generated tags. 
 

Table 7a: Dataset Description 
 GPS Shoes 

# Imported Reviews 1,039 9,860 
# PowerReviews Reviews 3,278 7,666 
Average number of user-
generated tags in a PR re-

view 
6.19 3.12 

Percent of PR reviews 
with user-generated tags 98.78% 97.93% 

# Pros used for extraction 43 60 
# Cons used for extraction 45 73 
 

Table 7b shows metrics most closely re-
lated to the traditional recall metric in natural 
language processing. We see that in both cate-
gories, more tags are extracted from imported 
reviews than PR reviews. This is most likely 
because the imported reviews were generally 
longer since the user did not have to input us-
er-generated tags before writing the review. 

Our system was able to extract more than 
twice as many tags per review from the shoe 
category, but the shoe category also had twice 
as many extracted tags that already existed as 
user-generated tags. This was in part due to 
using more tags for extraction in the shoe cat-
egory and because the GPS category’s tags 
were often more complex such as “Acquires 
Satellites Quickly” and “Complicated Con-
trols” while most of the shoe tags were 
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straightforward such as “Cute”, “Too Tight”, 
and “Fashionable”. 

An important note in Table 7b is that for 
both categories less than 30% of the tags ex-
tracted from PR reviews already existed as us-
er-generated tags. This shows that the system 
can produce substantial positive results even 
when processing reviews where the reviewer 
is explicitly asked to input pro and con tags 
during the review writing process. 
 

Table 7b: Recall Results 
 Imported PowerReviews 
 GPS Shoes GPS Shoes 

Average num-
ber of extracted 
tags per review 

0.69 2.13 0.68 1.46 

Percent of re-
views with ex-

tracted tags 
47.5% 89.9% 44.0% 77.6% 

Percent of ex-
tracted tags that 
already existed 

as user-
generated tags 

0% 0% 15.9% 28.0% 

 
Table 7c shows the precision of the ex-

tracted tags for each category. Due to resource 
constraints, we were unable to hand-evaluate 
every extracted tag. Instead, we evaluated a 
subset of each category by randomly sampling 
the extracted tags. Our system performed well 
on both categories, achieving around 95 ± 2%. 
 

Table 7c: Precision Results 
 GPS Shoes 

Precision 94.77% 95.45% 
Margin of error at 
95% confidence 2.13% 2.05% 

8 Conclusion 
In this paper we have described a production-
capable system for extracting pros and cons 
from product reviews. The system draws upon 
many sources of data for product/company 
names, word synonyms, and tags to extract. 
Many of these data sources, such as product 
names, can be automatically compiled from 
websites such as Amazon.com. Other data 

sources, such as the tags to be extracted from 
each category, require hand tailoring. Combin-
ing these data sources, the parsed dependency 
trees of the review text, and our tag extraction 
heuristics, our system is capable of automati-
cally extracting highly accurate (~95%) pros 
and cons with a reasonable recall rate (up to 
90% in some categories). Our system is also 
capable of extracting additional tags from re-
views where the user explicitly chose pro/con 
tags during the review writing process, with 
70% or more of tags extracted from the review 
text of such reviews being new tags. 
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