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1 Introduction 
For PA2 we implemented three word alignment 
models and tested them with the provided decoder 
to produce translations of French sentences into 
English.  Our first model was a simple PMI-based, 
surface-statistics model.  Our other two models 
were IBM Model One and Model Two.  We ex-
perimented with several variations of the IBM 
models including various bucket sizes and map-
ping techniques for Model Two's distortion prob-
ability distributions and various parameters for the 
decoder. 

We produced a learning curve for each model 
with training sets ranging from 447 sentence pairs 
to 220,824 sentence pairs.  Model One and Model 
Two achieve their lowest AER on the 221k set 
with 0.280 and 0.174 respectively.  They achieve 
their highest AER on the 447 set with 0.516 and 
0.367 respectively.  We achieve our best BLEU-4 
score of 0.139 with Model Two using our best 
language model from PA1 and the default decoder 
settings.  In the following sections we use f to de-
note the source language/words and e to denote the 
destination language/words. 

2 Implementation Details 
In this section we will briefly cover the implemen-
tation of our models and the tricks/tweaks used to 
speed up mass evaluations of models.  We skip 
discussion of our implementation of the Baseline 
Replacement model, which is the PMI-based sur-
face-statistics model, because it simply involves 
adding counts in a similar manner to the baseline 
word aligner. 

For both Model One and Model Two, we cal-
culate the probability of an alignment a for a sen-
tence pair (f, e) as 
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where the special NULL word in the target lan-
guage is at position ai = -1,  efi lenleniaP ,,|  is 

the distortion probability, and  
iai efP |  is the 

translation probability.  Both models use the same 
notion for the translation probability, and only dif-
fer by their distortion probability distributions, as 
described below. 

2.1 Model One 
In Model One we give the NULL word a fixed dis-
tortion probability of 0.2 and distribute the remain-
ing 0.8 uniformly across the destination words in 
the sentence.  Thus P(ai|i, lenf, lene) equals 0.2 
when ai is -1 and P(ai|i, lenf, lene) equals 0.8 / lene 
otherwise.  We tried several values for the fixed 
NULL distortion probability and found that the 
suggested value in the assignment handout (0.2) 
worked best. 

Aside from varying the fixed NULL distortion 
probability, we also tried completely removing the 
distortion probability from the equation.  This has 
a slightly different effect from a full uniform dis-
tribution (which would have all distortion prob-
abilities, including the NULL word's, as 1 / (lene + 
1 )) because we use the distortion probability in 
our EM training.  Thus without the distortion 
probabilities, the counts that are collected are not 
scaled by the length of the sentence. 

Table 2.1 shows the AER scores and BLEU-
4/WER decoding scores for using the fixed NULL 
+ uniform method and completely removing the 
distortion probabilities.  Decoding used the base-
line unigram MLE language model with a pseudo-
count of one for the NULL word.  As the table 
shows, including a distortion probability as we de-
scribed above gives slightly better performance 
over completely removing the distortion probabil-
ity from the model. 
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 AER BLEU-4 WER 
Training Size 447 5k 12k 33k 52k 73k 94k 113k 220k 80k 80k 
Fixed NULL 0.52 0.38 0.35 0.32 0.31 0.30 0.29 0.29 0.28 0.026 0.752 
No Distortion 0.51 0.40 0.38 0.35 0.34 0.33 0.32 0.32 0.31 0.016 0.800 

Table 2.1: AER scores and BLEU-4/WER decoding scores. 
Decoding used the baseline unigram MLE language model with a pseudo-count of one for the NULL word. 

 

2.1.1 Training 
We train our Model One word aligner using 

the EM algorithm as described in lecture.  We 
maintain a CounterMap t that holds the translation 
probabilities, which are probability distributions 
across the source language conditioning on the 
destination language.  We use our modified ver-
sion of the Counter class, which allows us to set a 
zero item mass attribute that is the value returned 
when the key does not exist in the counter.  t's first 
key designates the destination word, while the 
second key (the key for each inner Counter object) 
designates the source word.  Thus each Counter 
object within the Counter Map is a conditional 
probability distribution. 

We start the training by inserting a Counter 
object into t for every word in the destination vo-
cabulary (plus the NULL word) and setting each 
counter's zero item mass to be uniform (1 / lenf).  
Thus on the first run, all attempts to access the 
value within t given the two keys fails and the uni-
form probability is returned.  After initializing t, 
we begin our EM loop. 

First, we create a new CounterMap called 
tcounts that uses the same mapping of keys (desti-
nation word, then source word).  We loop through 
all sentence pairs (f, e), adding values to tcounts.  
For each word fi in the source sentence, we com-
pute the total probability mass for the word being 
aligned with any word in the destination sentence: 
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Then for each (ej, fi) pair in the sentence (includ-
ing NULL as an e-1), we add P(j|i, lenf, 
lene)P(fi|ej)/totali to the pair's running value in 
tcounts. 

After calculating all of the tcounts, we recal-
culate t by normalizing each counter in tcounts and 
writing the result to t.  After normalization, we re-
peat the loop that begins with the previous para-
graph.  If we have just finished the first iteration 
through this loop, we also set the zero item mass 
of each counter within t back to 0 and prune our 

probabilities by remove all destination/source 
word pairs from t where the probability is less than 
10-21.   This pruning saves memory and allows us 
to run additional tests quickly as described in Sec-
tion 2.4.  We repeat the EM loop until the largest 
change in absolute value for any value within t is 
less than 0.001. 

2.1.2 Finding the Best Alignment 
When finding the best alignment in the alignSen-
tencePair function, we choose the alignment for 
each source word independently of the other 
source words.  We align each source word fi to a 
destination word according to the following equa-
tion: 
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2.2 Model Two 
Model Two extends upon Model One by including 
a distortion probability that is learned during EM.  
In Model One, the distortion probability was a 
fixed 0.2 for aligning to the NULL word and uni-
form across the remaining 0.8 for the words in the 
destination sentence.  In Model Two, we again fix 
the distortion probability of aligning to the NULL 
word, but to 0.255.  We discuss evaluating the 
fixed NULL distortion probability and attempting 
to let EM choose the value in Section 2.2.4. 

Aside from training and maintaining the dis-
tortion probability distributions that are condi-
tioned on the source word position, source sen-
tence length, and destination sentence length 
(which we will describe below), Model Two is the 
same as Model One.  The alignSentencePair 
method is the same as Model One except for the 
different definition of the distortion probabilities. 

With the exception of the NULL word (which 
has a fixed distortion probability of 0.255), our 
distortion probability distributions are of the fol-
lowing form: 
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Here, bucket is a function that maps its input (real 
numbered displacements normalized for overall 
sentence length) to an index in the array d as sug-
gested in the assignment handout.  We studied the 
effect of varying the amount of buckets (amount of 
indices in d) and the effect of an absolute value 
mapping (e.g. -5 displacement and +5 displace-
ment both mapping to the same bucket) or having 
separate buckets for negative versus positive dis-
placements.  We discuss mapping methods in Sec-
tion 2.2.4 and bucket sizes in Section 2.2.5. 

2.2.1 Training with EM 
We train and calculate the distortion probabilities 
by maintaining a probability distribution over in-
dex values that the bucket function returns.  Our 
array d holds this probability distribution.  In the 
beginning of training, we initialize the t values to 
the values calculated by Model One's EM training 
performed with the same training set.  We initial-
ize the d array by setting it to a Gaussian-looking 
distribution centered on the zero displacement 
bucket.  During the EM loop, we keep track of 
dcounts, which has one collector for each index in 
d, in a similar manner to our tcounts.  dcounts is 
actually just an array of doubles that is the same 
size as the array d. 

At the beginning of an EM iteration, we ini-
tialize our dcounts and tcounts to zero.  We then 
loop through each sentence pair, gathering tcounts 
in the same manner as before.  We collect dcounts 
in the same way as tcounts (both are adding the 
same value to some bucket or location), except 
that in dcounts we add the value to the collector 
for the index that the bucket function returns for 
the specific source/destination pair.  Thus dcounts 
are accumulated by: 
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After collecting the counts, we calculate the 

new t values from the collected tcounts in the 
same manner as in Model One.  We calculate the 
new probability distribution d by normalizing the 
dcounts array (calculating the sum of the array and 
then dividing all values by that sum).  Unlike 

Model One, we repeat the EM loop for 50 itera-
tions instead of waiting for the largest absolute 
change to drop below 0.001.  We tested waiting 
for the change to drop below 0.001 and found that 
the tiny improvement over quitting after 50 itera-
tions was not worth the drastically longer process-
ing time. 

The next two sections discuss how our distor-
tion probability distributions are actually calcu-
lated using the probability distribution over buck-
ets that is held is d.  Section 2.2.2 describes our 
initial, flawed attempt that did not result in proper 
probability distributions but still produced good 
results.  Section 2.2.3 discusses our fix to create 
proper probability distributions and our mecha-
nism for handling all of the distributions. 

2.2.2 Incorrect Probabilities 
In our initial attempt at Model Two we simply 
used the probability distribution stored in d as the 
distortion distribution for all sentence pairs.  I.e., 
for all distortion probabilities except the NULL 
word we had 
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Unfortunately, this does not result in proper prob-
ability distributions because for a given i, lenf, and 
lene, summing over all possible destination word 
locations ai may not hit all indices of d exactly 
once and the summation over all values in d equals 
one.  Thus our first attempt did not result in proper 
probability distributions.  Nevertheless, the values 
that this first attempt produced were closely corre-
lated to the correct method in Section 2.2.3, result-
ing in much better AER scores than Model One. 

2.2.3 Correct Probabilities and 
Efficiently Handling Them 

The correct way to generate the distortion distribu-
tions is to calculate a separate distribution for each 
tuple (i, lenf, lene).  Thus for a fixed tuple (i, lenf, 
lene), we generate a probability distribution that 
has 0.255 probability for ai = -1 and the remaining 
0.745 distributed over the values ai = 0, 1, …, lene-
1 as follows: 
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We manage the probability distributions using 

a hash map from strings to arrays of doubles and a 
function getDistortionProbability that given the 
values (ai, i, lenf, lene) returns the correct probabil-
ity.  When getDistortionProbability is called, if ai 
= -1 then we return 0.255.  Otherwise, we check 
our hash map for the tuple (i, lenf, lene).  If the tu-
ple exists then we retrieve the tuple's probability 
distribution as an array and return the value at the 
ai index.  If the tuple does not exist then we gener-
ate the distribution as described in the previous 
paragraph and store the distribution in the hash 
map. 

2.2.4 Absolute or Neg/Pos Buckets? 
We tested using an absolute value mapping in the 
bucket function and having negative and positive 
values map to separate buckets.  In the absolute 
buckets case, we mapped negative values to the 
same bucket as their respective positive value (e.g. 
a distortion of -5 was mapped to the same bucket 
as +5).  In the neg/pos buckets case, we had sepa-
rate buckets for forward and backward distortions.  
We chose to use the neg/pos bucket method due to 
the results of the next section and because we can 

imagine a pairing of languages negative distortions 
are quite frequent while positive distortions are not 
(or vice versa).  In such a setting, the absolute 
buckets method would not capture this phenome-
non. 

2.2.5 How Many Buckets? 
We examined the effect that bucket size (the 
amount of buckets) has on AER.  We evaluated 
the AER score on the base set of 447 sentence 
pairs as we varied the bucket size from 5 to 30.  In 
the absolute buckets case, a bucket size of 5 means 
that we have 6 actual buckets (0, 1, 2, 3, 4, 5).  In 
the neg/pos buckets case, a bucket size of 5 means 
that we have 11 actual buckets (-5, -4, -3, -2, -1, 0, 
1, 2, 3, 4, 5).  Our tests concluded that as the 
bucket size increases, both methods converge to 
the same AER of 0.355 but the neg/pos buckets 
converges faster by about four bucket sizes. 

Figure 2.2.5 shows the AER of the neg/pos 
buckets method as a function of the bucket size.  
As seen in the graph, AER converges to 0.355 by a 
bucket size of 13.  The poor performance of small 
bucket sizes was due to too many alignments be-
ing mapped to the buckets on either end.  With a 
bucket size of 5, there were too many alignments 
that were less than -5 or greater than +5 and thus 
go mapped to the -5 or +5 bucket respectively.  
Through watching the probability distribution d 
during training, we found that this caused EM to 
place all of the probability mass on the zero distor-
tion bucket and end buckets.  We chose to use a 
bucket size of 20 as a safe buffer in case the AER 
converges less quickly when using larger datasets. 

Figure 2.2.5: AER vs. Bucket Size for Neg/Pos Buckets
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2.2.6 Null Distortion Probability 
We chose the NULL distortion probability by se-
lecting the smallest value that resulting in Model 
Two choosing a perfect alignment on the miniTest 
dataset.  We tried letting EM choose the NULL 
distortion probability by adding an extra bucket to 
d that was indexed only when aligning to the 
NULL word.  The result was that EM chose a 
probability of zero for the NULL word.  This did 
not translate into good AER values, so we kept the 
fixed probability of 0.255. 

2.3 Decoder Issues 
Due to smoothing issues and our pruning method 
with t to save space, Model One's getAlignment-
Prob function sometimes calculates a probability 
of zero for a given alignment during decoding.  
Since smoothing was not a focus of this project, 
we solved the problem by returning the value clos-
est to zero that a double can hold when the com-
puted probability was zero.  Since we used Java, 
this value returned was Double.MIN_NORMAL. 

2.4 Other Details 
In order to quickly evaluate our models under dif-
ferent conditions and settings (such as the LM, 
WA, and length weights in the decoder), we saved 
the result of training with each dataset to a file.  
Our models identify the training set by the amount 
of sentence pairs in the set and the language order-
ing of the set, which was generally "french-
english" in our case.  If the model had previously 
trained with the training set then the model loads 
the probability distributions from the proper file.  
If the model has not trained with the training set 
then the model trains as we previously described 
and outputs the result to the appropriate file.  Due 
to our pruning method, a Model One distribution 
file for a 51k training set only requires 11 MB of 
space (without compression) and for a 220k pair 
set only requires 50.5 MB of space (without com-
pression.  A Model Two file only requires 6.9 MB 
(uncompressed) and 22.1 MB (uncompressed) re-
spectively because there are more close-to-zero 
probabilities to that our pruning method removes. 

3 Proper Probability Distribu-
tions 

In this section, we skip the superficial statistics 
model and show that our Model One and Model 
Two probability distributions sum to one. 

3.1 Model One 
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within the CounterMap tcounts is renormalized af-
ter completion of EM to produce the conditional 
probability distributions and our CounterMap uses 
the destination word as the first key.  So each 
Counter object actually represents our desired 
conditional probability distribution after normali-
zation. 

For a given destination sentence e of length I, 
the Model One generative store assumes that we 
first pick a length J for the source sentence, then 
choose an alignment between the destination and 
source sentences, and then for each source position 
j we choose a word fj by translating the destination 
word that is aligned to it.  This works out to give a 
probability of a source sentence being aligned in a 
particular manner to the given destination sentence 
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which by summing over 'f' and 'a' sums to one be-
cause the inner probability distributions are proper 
probability distributions. 
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3.2 Model Two 
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of the conditional probability distribution in the 
getDistortionProbability function involves pulling 
values from the array d and then normalizing the 
values. 
 

  1|
)(


 FVocabf
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within the CounterMap tcounts is renormalized af-
ter completion of EM to produce the conditional 
probability distributions and our CounterMap uses 
the destination word as the first key.  So each 
Counter object actually represents our desired con-
ditional probability distribution after normaliza-
tion. 

Thus by the same reason as Model One, the 
total probability distribution sums to one because 

the inner probability distributions (the translation 
and distortion distributions) sum to one. 

4 Performance Analysis 

4.1 Word Alignment 
In this section we present learning curves for each 
of our models and alignment examples that show-
case the strengths and weaknesses of Model One 
and Model Two.  While we  

4.1.1 Learning Curves 
We ran Baseline Replacement (the PMI-style 
model), Model One, and Model Two on a series of 
increasing training set sizes to generate learning 
curves for AER, precision, and recall on the test 
set.  Our data set sizes range from 447 sentences to 
220,824 sentences.  Figure 4.1.1a shows the AER 
of each model as a function of training set size. 

 

 
 

As expected, the AER declines (which means 
the model is doing better), as the training set size 
increases.  We see the largest drops in AER early 
on because the model can make good use of the 
additional data.  As the training set size increases, 

the return from adding additional training data de-
creases. 

If limited on time, which can be a limitation 
with these models because they can take a long 
time to train, then our learning curve shows the 
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sweet spot to be around 75,000 sentence pairs for 
Model One and Model Two.  Adding additional 
sentences, such as with our 94k and 113k training 
sets, barely decreases AER and does not provide 
enough improvement for the amount of extra train-
ing time required.  Both models continue to show 
improvement between the 113k and 221k training 
sets, but each model's AER only decreases by 
0.01, which is not worth the extra time required by 
training on an additional 108k sentence pairs. 

With the exception of the 447 sentence pair 
set, the difference between Model One and Model 
Two AER scores remains almost constant.  The all 
other AER scores their difference is generally be-
tween 0.095 and 0.106.  Model One starts the 
curve with 0.516 AER on the 447 set while Model 
Two starts with 0.367 AER.  They each end on the 
221k set with 0.280 and 0.174 respectively. 

Figures 4.1.1b and 4.1.1c show the precision 
and recall for each model.  As is slightly evident in 
the curves, and is definitely clear in the numbers, 
the recall quickly levels off for Model One and 
Model Two as the training size increases while 
their precision scores level off less quickly and 
seem to slowly creep upwards. 

 

 
 

4.1.2 Alignment Comparison 
Figure 4.1.2 is a prime example of the kinds of er-
rors in Model One that Model Two attempts to fix.  
The figure shows a single French-English sentence 
pair.  Brackets [ ] indicate "sure" truth alignments 
while parentheses ( ) indicate "possible" truth 
alignments.  The hash marks # indicate the align-
ments that the models chose.  Black hash marks 
are alignments that both Model One and Model 
Two chose, red are alignments chosen solely by 
Model One, and green are alignments chosen only 
by Model Two. 

One frequent problem with Model One is that 
it does not take any advantage of the fact that lan-
guage alignments roughly tend to fall along the di-
agonal since its distortion probabilities are uni-
form.  It makes spurious alignments such as align-
ing "pas" with "not" in the top right of the figure.  
Instead, the correct alignment is the word "no" at 
the beginning of the sentence.  Model One makes 
this error because "pas" is likely to translate as 
both "not" and "no", and since the distortion prob-
abilities are uniform, it has no incentive to align 

with the word that is more along the diagonal.  
These errors can easily be resolved by giving more 
weight to alignments that lie along the diagonal. 

Model Two attempts to make use of this no-
tion with the incorporation of a learned distortion 
probability.  The example in Figure 4.1.2 shows 
how many of Model One's errors are fixed with 
Model Two.  Instead of aligning "pas" incorrectly 
in the top right of the figure, Model Two aligns it 
with the sure alignment of "no".  Model Two also 
correctly aligns the two French words before 
"pas", and the "pas" that occurs at the end of the 
French sentence.  Model Two is also able to pick 
up several other sure alignments that Model One 
aligned to NULL, such as "en" and "la" near the 
middle of the sentence.  Model Two does not fix 
all problems, as it still makes the same incorrect 
alignment for "matiere" in the middle of the sen-
tence.  Also, while it moves the alignment choice 
for "exclusivement" closer to the correct align-
ment, it still gets it wrong. 
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Figure 4.1.2: Brackets [ ] indicate "sure" alignments while parentheses ( ) indicate "possible" alignments.  Hash 

marks # indicate the alignments that the models chose.  Black hash marks are alignments that both Model One and 
Model Two chose, red are alignments only Model One chose, and green are alignments only Model Two chose. 

4.2 Translation (Decoder) 
We ran the decoder with several different settings 
and language models.  We used two different lan-
guage models from our previous assignment.  The 
first model, which we will refer to as MLE, is a 
baseline empirical unigram model that includes a 
pseudo-count of one for the unknown token.  The 
second model, which we will refer to as LI, is a 
linearly interpolated model consisting of a Simple 
Good Turing (SGT) smoothed unigram model, and 
a bigram and trigram each smoothed with Katz 
backoff.  The bigram model internally includes an 
SGT unigram model that it backs off to.  The tri-
gram model internally contains a bigram with Katz 
backoff that it backs off to. 

For all results we trained the language model 
using 90,000 sentences and used a separate set of 
10,000 sentences as validation data to set the pa-
rameters of LinInterp.  We trained the alignment 
models using 80,253 sentence pairs.  We tried sev-
eral values for the lmweight, transweight, and 
lengthweight parameters of the decoder.  We con-
tinue  this section  by first  presenting our  motiva- 

 
 
tion for trying various decoder parameters.  We 
then finish with WER and BLEU-4 scores for each 
of our tests. 

4.2.1 Translation Examples 
In this section, as well as Section 4.2.2 and 4.2.3, 
we will use an abbreviated naming convention to 
specify the models and parameters used during a 
test.  We will abbreviate Model One and Model 
Two and M1 and M2 respectively.  We will also 
specify the lmweight, transweight, and length-
weight parameters as LM, WA, and L respec-
tively.  For example, a test using Model Two with 
the linearly interpolated language model and de-
coder parameters of 0.4 lmweight, 0.6 transweight, 
and 1.0 lengthweight will be abbreviated as "M2 
LI 0.4LM 0.6WA 1.0L". 

Figure 4.2.1 shows the first sentence that the 
decoder translates.  While the alignment 
model/language model pairs with the default de-
coder settings of 0.6LM 0.4WA 1.0L successfully 
translated some of the words, they lack several 
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important words such as the word "is".  To remedy 
the situation we tried flipping the weights on the 
language model and alignment model, which pro-
duced the favorable translation of M2  LI 0.4LM 
0.6WA 1.000. 

We also tried leaving the default LM and WA 
parameters and increasing the length parameter to 
encourage longer sentences that perhaps would 
contain more words from the correct translation.  
This resulted in the bottom four outputs in Figure 

4.2.1.  The last of these tests, M2  LI 0.6LM 
0.4WA 1.500L, produced a longer but much better 
translation than the other translations.  With these 
encouraging results we decided to run the decoder 
through the end on all of the test settings in Figure 
4.2.1.  As we show in the next two sections, while 
the first translation output in Figure 4.2.1 was en-
couraging, the default settings ended up producing 
better translations on other sentences in the set. 

 
                   French: monsieur le Orateur, ma question se adresse ? le ministre charg? de les transports.  
                  English: Mr. Speaker, my question is directed to the Minister of Transport.  
M1  LI 0.6LM 0.4WA 1.000L: Mr. -- Warren, my question to the Minister of Transport.  
M1 MLE 0.6LM 0.4WA 1.000L: Mr. remarks, question the Transport CIDA Minister  
M2  LI 0.6LM 0.4WA 1.000L: Mr. -- Warren, my question to the Minister of transportation.  
M2 MLE 0.6LM 0.4WA 1.000L: Mr. the, question directed to the of Transport.  
M2  LI 0.4LM 0.6WA 1.000L: Mr. the --, my question is directed to the Minister Warren of the transportation.  
M2  LI 0.4LM 0.6WA 1.500L: Mr. the --, my question is directed to the Minister of Warren of the transportation.  
M2  LI 0.6LM 0.4WA 1.125L: Mr. the --, my question is to the Minister of the Warren transportation.  
M2  LI 0.6LM 0.4WA 1.250L: Mr. the --, my question is to the Minister of the Warren transportation.  
M2  LI 0.6LM 0.4WA 1.375L: Mr. the --, my question is to the Minister of the Warren transportation.  
M2  LI 0.6LM 0.4WA 1.500L: Mr. the --, my question is directed to the Minister of the transportation system. 

Figure 4.2.1: The first sentence translated by the decoder. 
 

4.2.2 WER 
Figure 4.2.2 shows the word error rates for all of 
our decoder tests.  We do not spend much time 
here discussing the results because the BLEU-4 
measure is a much more important measure of ma-
chine translation quality. 
 

4.2.3 BLEU-4 
Figure 4.2.3a shows the BLEU-4 scores for all of 
our decoder tests.  As the figure shows, Model 
Two with the LinInterp language model and the 
default decoder settings receives the highest 
BLEU-4 score.  M1 MLE achieved a score of 
0.026 and M2 MLE achieved a score of 0.069.  
While the deviations from the default decoder set-
tings were promising for the first sentence, they all 
produced uglier translations for later sentences in 
the test set.  The BLEU-4 scores also show the 
importance of a good language model, as the jump 
from MLE to LI in Model One (the two bottom 
bars) is quite significant. 

An interesting insight can be found by looking 
at the log n-gram scores and brevity penalty for 
each test.  Figure 4.2.3b shows the log n-gram 
scores for the four aligner/language model pairs 
using the default decoder settings.  As one can see, 
the M1 LI and M2 LI pairs received almost the ex-
act same log n-gram scores.  In fact, the M1 LI 
configuretion has an ever so slightly better set of 
log n-gram scores. 

This is important because the two configura-
tions had fairly different BLEU-4 scores.  M2 LI 
had a score of 0.139 while the M1 LI had a score 
of 0.129.  The difference in their BLEU-4 score is 
explained by the M1 LI configuration's brevity 
penalty of 0.879.  All Model Two configurations 
that used the linearly interpolated language model 
received no brevity penalty (1.0), while M2 MLE 
had a penalty of 0.806 and M1 MLE had a penalty 
of 0.449.  Thus while M2 LI and M1 LI both had 
almost identical log n-gram scores, M2 LI 
achieved a higher BLEU-4 score by not receiving 
any brevity penalty. 

5 Improvements 
We believe that our alignment models would 
benefit the most from incorporating part-of-speech 
tags and other linguistic features and by including 
the fertility modeling of IBM Model 3.  As we saw 
in the actual translation with the decoder, a better 
language model can also never hurt. 

6 Member Contributions 
Todd implemented Model Two.  Todd an Pavani 
pair programmed the rest of the assignment.  Todd 
generated, organized, and formatted all results 
while Pavani selected the examples and created 
the graphs.  Todd wrote Sections 1 through 3 of 
the report while Pavani wrote the initial version of 
Section 4 and Todd edited Section 4. 
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Figure 4.2.2: WER
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 Figure 4.2.3a: BLEU-4
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Figure 4.2.3b: Log N-grams
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