
[1]

CS 224n Programming Assignment 2: Machine Translation

Todd Sullivan

todd.sullivan@cs.stanford.edu
Pavani Vantimitta
pavani@stanford.edu

1 Introduction
For PA2 we implemented three word alignment
models and tested them with the provided decoder
to produce translations of French sentences into
English. Our first model was a simple PMI-based,
surface-statistics model. Our other two models
were IBM Model One and Model Two. We ex-
perimented with several variations of the IBM
models including various bucket sizes and map-
ping techniques for Model Two's distortion prob-
ability distributions and various parameters for the
decoder.

We produced a learning curve for each model
with training sets ranging from 447 sentence pairs
to 220,824 sentence pairs. Model One and Model
Two achieve their lowest AER on the 221k set
with 0.280 and 0.174 respectively. They achieve
their highest AER on the 447 set with 0.516 and
0.367 respectively. We achieve our best BLEU-4
score of 0.139 with Model Two using our best
language model from PA1 and the default decoder
settings. In the following sections we use f to de-
note the source language/words and e to denote the
destination language/words.

2 Implementation Details
In this section we will briefly cover the implemen-
tation of our models and the tricks/tweaks used to
speed up mass evaluations of models. We skip
discussion of our implementation of the Baseline
Replacement model, which is the PMI-based sur-
face-statistics model, because it simply involves
adding counts in a similar manner to the baseline
word aligner.

For both Model One and Model Two, we cal-
culate the probability of an alignment a for a sen-
tence pair (f, e) as

     





1

0

|,,||,
f

i

len

i
aiefi efPlenleniaPeafP

where the special NULL word in the target lan-
guage is at position ai = -1,  efi lenleniaP ,,| is

the distortion probability, and  
iai efP | is the

translation probability. Both models use the same
notion for the translation probability, and only dif-
fer by their distortion probability distributions, as
described below.

2.1 Model One
In Model One we give the NULL word a fixed dis-
tortion probability of 0.2 and distribute the remain-
ing 0.8 uniformly across the destination words in
the sentence. Thus P(ai|i, lenf, lene) equals 0.2
when ai is -1 and P(ai|i, lenf, lene) equals 0.8 / lene
otherwise. We tried several values for the fixed
NULL distortion probability and found that the
suggested value in the assignment handout (0.2)
worked best.

Aside from varying the fixed NULL distortion
probability, we also tried completely removing the
distortion probability from the equation. This has
a slightly different effect from a full uniform dis-
tribution (which would have all distortion prob-
abilities, including the NULL word's, as 1 / (lene +
1)) because we use the distortion probability in
our EM training. Thus without the distortion
probabilities, the counts that are collected are not
scaled by the length of the sentence.

Table 2.1 shows the AER scores and BLEU-
4/WER decoding scores for using the fixed NULL
+ uniform method and completely removing the
distortion probabilities. Decoding used the base-
line unigram MLE language model with a pseudo-
count of one for the NULL word. As the table
shows, including a distortion probability as we de-
scribed above gives slightly better performance
over completely removing the distortion probabil-
ity from the model.

[2]

 AER BLEU-4 WER
Training Size 447 5k 12k 33k 52k 73k 94k 113k 220k 80k 80k
Fixed NULL 0.52 0.38 0.35 0.32 0.31 0.30 0.29 0.29 0.28 0.026 0.752
No Distortion 0.51 0.40 0.38 0.35 0.34 0.33 0.32 0.32 0.31 0.016 0.800

Table 2.1: AER scores and BLEU-4/WER decoding scores.
Decoding used the baseline unigram MLE language model with a pseudo-count of one for the NULL word.

2.1.1 Training
We train our Model One word aligner using

the EM algorithm as described in lecture. We
maintain a CounterMap t that holds the translation
probabilities, which are probability distributions
across the source language conditioning on the
destination language. We use our modified ver-
sion of the Counter class, which allows us to set a
zero item mass attribute that is the value returned
when the key does not exist in the counter. t's first
key designates the destination word, while the
second key (the key for each inner Counter object)
designates the source word. Thus each Counter
object within the Counter Map is a conditional
probability distribution.

We start the training by inserting a Counter
object into t for every word in the destination vo-
cabulary (plus the NULL word) and setting each
counter's zero item mass to be uniform (1 / lenf).
Thus on the first run, all attempts to access the
value within t given the two keys fails and the uni-
form probability is returned. After initializing t,
we begin our EM loop.

First, we create a new CounterMap called
tcounts that uses the same mapping of keys (desti-
nation word, then source word). We loop through
all sentence pairs (f, e), adding values to tcounts.
For each word fi in the source sentence, we com-
pute the total probability mass for the word being
aligned with any word in the destination sentence:

    





1

1

|,,|
elen

j
jiefi efPlenlenijPtotal

Then for each (ej, fi) pair in the sentence (includ-
ing NULL as an e-1), we add P(j|i, lenf,
lene)P(fi|ej)/totali to the pair's running value in
tcounts.

After calculating all of the tcounts, we recal-
culate t by normalizing each counter in tcounts and
writing the result to t. After normalization, we re-
peat the loop that begins with the previous para-
graph. If we have just finished the first iteration
through this loop, we also set the zero item mass
of each counter within t back to 0 and prune our

probabilities by remove all destination/source
word pairs from t where the probability is less than
10-21. This pruning saves memory and allows us
to run additional tests quickly as described in Sec-
tion 2.4. We repeat the EM loop until the largest
change in absolute value for any value within t is
less than 0.001.

2.1.2 Finding the Best Alignment
When finding the best alignment in the alignSen-
tencePair function, we choose the alignment for
each source word independently of the other
source words. We align each source word fi to a
destination word according to the following equa-
tion:

 
   jief

lenj
i efPlenlenijPa

e

|,,|maxarg
1,...,1,1 



2.2 Model Two
Model Two extends upon Model One by including
a distortion probability that is learned during EM.
In Model One, the distortion probability was a
fixed 0.2 for aligning to the NULL word and uni-
form across the remaining 0.8 for the words in the
destination sentence. In Model Two, we again fix
the distortion probability of aligning to the NULL
word, but to 0.255. We discuss evaluating the
fixed NULL distortion probability and attempting
to let EM choose the value in Section 2.2.4.

Aside from training and maintaining the dis-
tortion probability distributions that are condi-
tioned on the source word position, source sen-
tence length, and destination sentence length
(which we will describe below), Model Two is the
same as Model One. The alignSentencePair
method is the same as Model One except for the
different definition of the distortion probabilities.

With the exception of the NULL word (which
has a fixed distortion probability of 0.255), our
distortion probability distributions are of the fol-
lowing form:

 






















f

e
iefi len

leniabucketdlenleniaP ,,|

[3]

Here, bucket is a function that maps its input (real
numbered displacements normalized for overall
sentence length) to an index in the array d as sug-
gested in the assignment handout. We studied the
effect of varying the amount of buckets (amount of
indices in d) and the effect of an absolute value
mapping (e.g. -5 displacement and +5 displace-
ment both mapping to the same bucket) or having
separate buckets for negative versus positive dis-
placements. We discuss mapping methods in Sec-
tion 2.2.4 and bucket sizes in Section 2.2.5.

2.2.1 Training with EM
We train and calculate the distortion probabilities
by maintaining a probability distribution over in-
dex values that the bucket function returns. Our
array d holds this probability distribution. In the
beginning of training, we initialize the t values to
the values calculated by Model One's EM training
performed with the same training set. We initial-
ize the d array by setting it to a Gaussian-looking
distribution centered on the zero displacement
bucket. During the EM loop, we keep track of
dcounts, which has one collector for each index in
d, in a similar manner to our tcounts. dcounts is
actually just an array of doubles that is the same
size as the array d.

At the beginning of an EM iteration, we ini-
tialize our dcounts and tcounts to zero. We then
loop through each sentence pair, gathering tcounts
in the same manner as before. We collect dcounts
in the same way as tcounts (both are adding the
same value to some bucket or location), except
that in dcounts we add the value to the collector
for the index that the bucket function returns for
the specific source/destination pair. Thus dcounts
are accumulated by:

   
i

jief

f

e
i

total
efPlenlenijP

len
leniabucketdcounts

|,,|
























After collecting the counts, we calculate the

new t values from the collected tcounts in the
same manner as in Model One. We calculate the
new probability distribution d by normalizing the
dcounts array (calculating the sum of the array and
then dividing all values by that sum). Unlike

Model One, we repeat the EM loop for 50 itera-
tions instead of waiting for the largest absolute
change to drop below 0.001. We tested waiting
for the change to drop below 0.001 and found that
the tiny improvement over quitting after 50 itera-
tions was not worth the drastically longer process-
ing time.

The next two sections discuss how our distor-
tion probability distributions are actually calcu-
lated using the probability distribution over buck-
ets that is held is d. Section 2.2.2 describes our
initial, flawed attempt that did not result in proper
probability distributions but still produced good
results. Section 2.2.3 discusses our fix to create
proper probability distributions and our mecha-
nism for handling all of the distributions.

2.2.2 Incorrect Probabilities
In our initial attempt at Model Two we simply
used the probability distribution stored in d as the
distortion distribution for all sentence pairs. I.e.,
for all distortion probabilities except the NULL
word we had

 

  























f

e
i

efi

len
leniabucketd

lenleniaP

255.01

,,|

Unfortunately, this does not result in proper prob-
ability distributions because for a given i, lenf, and
lene, summing over all possible destination word
locations ai may not hit all indices of d exactly
once and the summation over all values in d equals
one. Thus our first attempt did not result in proper
probability distributions. Nevertheless, the values
that this first attempt produced were closely corre-
lated to the correct method in Section 2.2.3, result-
ing in much better AER scores than Model One.

2.2.3 Correct Probabilities and
Efficiently Handling Them

The correct way to generate the distortion distribu-
tions is to calculate a separate distribution for each
tuple (i, lenf, lene). Thus for a fixed tuple (i, lenf,
lene), we generate a probability distribution that
has 0.255 probability for ai = -1 and the remaining
0.745 distributed over the values ai = 0, 1, …, lene-
1 as follows:

[4]



























1

0

elen

j f

e

len
lenijbucketdtotal

 
total

len
leniabucketd

lenleniaP
f

e
i

efi























 745.0,,|

We manage the probability distributions using

a hash map from strings to arrays of doubles and a
function getDistortionProbability that given the
values (ai, i, lenf, lene) returns the correct probabil-
ity. When getDistortionProbability is called, if ai
= -1 then we return 0.255. Otherwise, we check
our hash map for the tuple (i, lenf, lene). If the tu-
ple exists then we retrieve the tuple's probability
distribution as an array and return the value at the
ai index. If the tuple does not exist then we gener-
ate the distribution as described in the previous
paragraph and store the distribution in the hash
map.

2.2.4 Absolute or Neg/Pos Buckets?
We tested using an absolute value mapping in the
bucket function and having negative and positive
values map to separate buckets. In the absolute
buckets case, we mapped negative values to the
same bucket as their respective positive value (e.g.
a distortion of -5 was mapped to the same bucket
as +5). In the neg/pos buckets case, we had sepa-
rate buckets for forward and backward distortions.
We chose to use the neg/pos bucket method due to
the results of the next section and because we can

imagine a pairing of languages negative distortions
are quite frequent while positive distortions are not
(or vice versa). In such a setting, the absolute
buckets method would not capture this phenome-
non.

2.2.5 How Many Buckets?
We examined the effect that bucket size (the
amount of buckets) has on AER. We evaluated
the AER score on the base set of 447 sentence
pairs as we varied the bucket size from 5 to 30. In
the absolute buckets case, a bucket size of 5 means
that we have 6 actual buckets (0, 1, 2, 3, 4, 5). In
the neg/pos buckets case, a bucket size of 5 means
that we have 11 actual buckets (-5, -4, -3, -2, -1, 0,
1, 2, 3, 4, 5). Our tests concluded that as the
bucket size increases, both methods converge to
the same AER of 0.355 but the neg/pos buckets
converges faster by about four bucket sizes.

Figure 2.2.5 shows the AER of the neg/pos
buckets method as a function of the bucket size.
As seen in the graph, AER converges to 0.355 by a
bucket size of 13. The poor performance of small
bucket sizes was due to too many alignments be-
ing mapped to the buckets on either end. With a
bucket size of 5, there were too many alignments
that were less than -5 or greater than +5 and thus
go mapped to the -5 or +5 bucket respectively.
Through watching the probability distribution d
during training, we found that this caused EM to
place all of the probability mass on the zero distor-
tion bucket and end buckets. We chose to use a
bucket size of 20 as a safe buffer in case the AER
converges less quickly when using larger datasets.

Figure 2.2.5: AER vs. Bucket Size for Neg/Pos Buckets

0.3

0.35

0.4

0.45

0.5

0.55

0.6

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Bucket Size

AER

[5]

2.2.6 Null Distortion Probability
We chose the NULL distortion probability by se-
lecting the smallest value that resulting in Model
Two choosing a perfect alignment on the miniTest
dataset. We tried letting EM choose the NULL
distortion probability by adding an extra bucket to
d that was indexed only when aligning to the
NULL word. The result was that EM chose a
probability of zero for the NULL word. This did
not translate into good AER values, so we kept the
fixed probability of 0.255.

2.3 Decoder Issues
Due to smoothing issues and our pruning method
with t to save space, Model One's getAlignment-
Prob function sometimes calculates a probability
of zero for a given alignment during decoding.
Since smoothing was not a focus of this project,
we solved the problem by returning the value clos-
est to zero that a double can hold when the com-
puted probability was zero. Since we used Java,
this value returned was Double.MIN_NORMAL.

2.4 Other Details
In order to quickly evaluate our models under dif-
ferent conditions and settings (such as the LM,
WA, and length weights in the decoder), we saved
the result of training with each dataset to a file.
Our models identify the training set by the amount
of sentence pairs in the set and the language order-
ing of the set, which was generally "french-
english" in our case. If the model had previously
trained with the training set then the model loads
the probability distributions from the proper file.
If the model has not trained with the training set
then the model trains as we previously described
and outputs the result to the appropriate file. Due
to our pruning method, a Model One distribution
file for a 51k training set only requires 11 MB of
space (without compression) and for a 220k pair
set only requires 50.5 MB of space (without com-
pression. A Model Two file only requires 6.9 MB
(uncompressed) and 22.1 MB (uncompressed) re-
spectively because there are more close-to-zero
probabilities to that our pruning method removes.

3 Proper Probability Distribu-
tions

In this section, we skip the superficial statistics
model and show that our Model One and Model
Two probability distributions sum to one.

3.1 Model One

 

   

18.02.018.02.0

18.02.08.02.0

,,|,,|1

,,|

1

1

0

1

0

1

0

1

1

































e

i

e

i

e

i

e

i

e

i

len

a e

len

a e

len

a e

len

a
efief

len

a
efi

len

lenlen

lenleniaPlenleniP

lenleniaP

  1|
)(


 FVocabf

efP because each Counter object

within the CounterMap tcounts is renormalized af-
ter completion of EM to produce the conditional
probability distributions and our CounterMap uses
the destination word as the first key. So each
Counter object actually represents our desired
conditional probability distribution after normali-
zation.

For a given destination sentence e of length I,
the Model One generative store assumes that we
first pick a length J for the source sentence, then
choose an alignment between the destination and
source sentences, and then for each source position
j we choose a word fj by translating the destination
word that is aligned to it. This works out to give a
probability of a source sentence being aligned in a
particular manner to the given destination sentence

as      





1

0

|,,||,
f

i

len

i
aiefi efPlenleniaPeafP ,

which by summing over 'f' and 'a' sums to one be-
cause the inner probability distributions are proper
probability distributions.

[6]

3.2 Model Two

  1,,|
1

1






e

i

len

a
efi lenleniaP since our computation

of the conditional probability distribution in the
getDistortionProbability function involves pulling
values from the array d and then normalizing the
values.

  1|
)(


 FVocabf

efP because each Counter object

within the CounterMap tcounts is renormalized af-
ter completion of EM to produce the conditional
probability distributions and our CounterMap uses
the destination word as the first key. So each
Counter object actually represents our desired con-
ditional probability distribution after normaliza-
tion.

Thus by the same reason as Model One, the
total probability distribution sums to one because

the inner probability distributions (the translation
and distortion distributions) sum to one.

4 Performance Analysis

4.1 Word Alignment
In this section we present learning curves for each
of our models and alignment examples that show-
case the strengths and weaknesses of Model One
and Model Two. While we

4.1.1 Learning Curves
We ran Baseline Replacement (the PMI-style
model), Model One, and Model Two on a series of
increasing training set sizes to generate learning
curves for AER, precision, and recall on the test
set. Our data set sizes range from 447 sentences to
220,824 sentences. Figure 4.1.1a shows the AER
of each model as a function of training set size.

As expected, the AER declines (which means
the model is doing better), as the training set size
increases. We see the largest drops in AER early
on because the model can make good use of the
additional data. As the training set size increases,

the return from adding additional training data de-
creases.

If limited on time, which can be a limitation
with these models because they can take a long
time to train, then our learning curve shows the

[7]

sweet spot to be around 75,000 sentence pairs for
Model One and Model Two. Adding additional
sentences, such as with our 94k and 113k training
sets, barely decreases AER and does not provide
enough improvement for the amount of extra train-
ing time required. Both models continue to show
improvement between the 113k and 221k training
sets, but each model's AER only decreases by
0.01, which is not worth the extra time required by
training on an additional 108k sentence pairs.

With the exception of the 447 sentence pair
set, the difference between Model One and Model
Two AER scores remains almost constant. The all
other AER scores their difference is generally be-
tween 0.095 and 0.106. Model One starts the
curve with 0.516 AER on the 447 set while Model
Two starts with 0.367 AER. They each end on the
221k set with 0.280 and 0.174 respectively.

Figures 4.1.1b and 4.1.1c show the precision
and recall for each model. As is slightly evident in
the curves, and is definitely clear in the numbers,
the recall quickly levels off for Model One and
Model Two as the training size increases while
their precision scores level off less quickly and
seem to slowly creep upwards.

4.1.2 Alignment Comparison
Figure 4.1.2 is a prime example of the kinds of er-
rors in Model One that Model Two attempts to fix.
The figure shows a single French-English sentence
pair. Brackets [] indicate "sure" truth alignments
while parentheses () indicate "possible" truth
alignments. The hash marks # indicate the align-
ments that the models chose. Black hash marks
are alignments that both Model One and Model
Two chose, red are alignments chosen solely by
Model One, and green are alignments chosen only
by Model Two.

One frequent problem with Model One is that
it does not take any advantage of the fact that lan-
guage alignments roughly tend to fall along the di-
agonal since its distortion probabilities are uni-
form. It makes spurious alignments such as align-
ing "pas" with "not" in the top right of the figure.
Instead, the correct alignment is the word "no" at
the beginning of the sentence. Model One makes
this error because "pas" is likely to translate as
both "not" and "no", and since the distortion prob-
abilities are uniform, it has no incentive to align

with the word that is more along the diagonal.
These errors can easily be resolved by giving more
weight to alignments that lie along the diagonal.

Model Two attempts to make use of this no-
tion with the incorporation of a learned distortion
probability. The example in Figure 4.1.2 shows
how many of Model One's errors are fixed with
Model Two. Instead of aligning "pas" incorrectly
in the top right of the figure, Model Two aligns it
with the sure alignment of "no". Model Two also
correctly aligns the two French words before
"pas", and the "pas" that occurs at the end of the
French sentence. Model Two is also able to pick
up several other sure alignments that Model One
aligned to NULL, such as "en" and "la" near the
middle of the sentence. Model Two does not fix
all problems, as it still makes the same incorrect
alignment for "matiere" in the middle of the sen-
tence. Also, while it moves the alignment choice
for "exclusivement" closer to the correct align-
ment, it still gets it wrong.

[8]

Figure 4.1.2: Brackets [] indicate "sure" alignments while parentheses () indicate "possible" alignments. Hash

marks # indicate the alignments that the models chose. Black hash marks are alignments that both Model One and
Model Two chose, red are alignments only Model One chose, and green are alignments only Model Two chose.

4.2 Translation (Decoder)
We ran the decoder with several different settings
and language models. We used two different lan-
guage models from our previous assignment. The
first model, which we will refer to as MLE, is a
baseline empirical unigram model that includes a
pseudo-count of one for the unknown token. The
second model, which we will refer to as LI, is a
linearly interpolated model consisting of a Simple
Good Turing (SGT) smoothed unigram model, and
a bigram and trigram each smoothed with Katz
backoff. The bigram model internally includes an
SGT unigram model that it backs off to. The tri-
gram model internally contains a bigram with Katz
backoff that it backs off to.

For all results we trained the language model
using 90,000 sentences and used a separate set of
10,000 sentences as validation data to set the pa-
rameters of LinInterp. We trained the alignment
models using 80,253 sentence pairs. We tried sev-
eral values for the lmweight, transweight, and
lengthweight parameters of the decoder. We con-
tinue this section by first presenting our motiva-

tion for trying various decoder parameters. We
then finish with WER and BLEU-4 scores for each
of our tests.

4.2.1 Translation Examples
In this section, as well as Section 4.2.2 and 4.2.3,
we will use an abbreviated naming convention to
specify the models and parameters used during a
test. We will abbreviate Model One and Model
Two and M1 and M2 respectively. We will also
specify the lmweight, transweight, and length-
weight parameters as LM, WA, and L respec-
tively. For example, a test using Model Two with
the linearly interpolated language model and de-
coder parameters of 0.4 lmweight, 0.6 transweight,
and 1.0 lengthweight will be abbreviated as "M2
LI 0.4LM 0.6WA 1.0L".

Figure 4.2.1 shows the first sentence that the
decoder translates. While the alignment
model/language model pairs with the default de-
coder settings of 0.6LM 0.4WA 1.0L successfully
translated some of the words, they lack several

[9]

important words such as the word "is". To remedy
the situation we tried flipping the weights on the
language model and alignment model, which pro-
duced the favorable translation of M2 LI 0.4LM
0.6WA 1.000.

We also tried leaving the default LM and WA
parameters and increasing the length parameter to
encourage longer sentences that perhaps would
contain more words from the correct translation.
This resulted in the bottom four outputs in Figure

4.2.1. The last of these tests, M2 LI 0.6LM
0.4WA 1.500L, produced a longer but much better
translation than the other translations. With these
encouraging results we decided to run the decoder
through the end on all of the test settings in Figure
4.2.1. As we show in the next two sections, while
the first translation output in Figure 4.2.1 was en-
couraging, the default settings ended up producing
better translations on other sentences in the set.

 French: monsieur le Orateur, ma question se adresse ? le ministre charg? de les transports.
 English: Mr. Speaker, my question is directed to the Minister of Transport.
M1 LI 0.6LM 0.4WA 1.000L: Mr. -- Warren, my question to the Minister of Transport.
M1 MLE 0.6LM 0.4WA 1.000L: Mr. remarks, question the Transport CIDA Minister
M2 LI 0.6LM 0.4WA 1.000L: Mr. -- Warren, my question to the Minister of transportation.
M2 MLE 0.6LM 0.4WA 1.000L: Mr. the, question directed to the of Transport.
M2 LI 0.4LM 0.6WA 1.000L: Mr. the --, my question is directed to the Minister Warren of the transportation.
M2 LI 0.4LM 0.6WA 1.500L: Mr. the --, my question is directed to the Minister of Warren of the transportation.
M2 LI 0.6LM 0.4WA 1.125L: Mr. the --, my question is to the Minister of the Warren transportation.
M2 LI 0.6LM 0.4WA 1.250L: Mr. the --, my question is to the Minister of the Warren transportation.
M2 LI 0.6LM 0.4WA 1.375L: Mr. the --, my question is to the Minister of the Warren transportation.
M2 LI 0.6LM 0.4WA 1.500L: Mr. the --, my question is directed to the Minister of the transportation system.

Figure 4.2.1: The first sentence translated by the decoder.

4.2.2 WER
Figure 4.2.2 shows the word error rates for all of
our decoder tests. We do not spend much time
here discussing the results because the BLEU-4
measure is a much more important measure of ma-
chine translation quality.

4.2.3 BLEU-4
Figure 4.2.3a shows the BLEU-4 scores for all of
our decoder tests. As the figure shows, Model
Two with the LinInterp language model and the
default decoder settings receives the highest
BLEU-4 score. M1 MLE achieved a score of
0.026 and M2 MLE achieved a score of 0.069.
While the deviations from the default decoder set-
tings were promising for the first sentence, they all
produced uglier translations for later sentences in
the test set. The BLEU-4 scores also show the
importance of a good language model, as the jump
from MLE to LI in Model One (the two bottom
bars) is quite significant.

An interesting insight can be found by looking
at the log n-gram scores and brevity penalty for
each test. Figure 4.2.3b shows the log n-gram
scores for the four aligner/language model pairs
using the default decoder settings. As one can see,
the M1 LI and M2 LI pairs received almost the ex-
act same log n-gram scores. In fact, the M1 LI
configuretion has an ever so slightly better set of
log n-gram scores.

This is important because the two configura-
tions had fairly different BLEU-4 scores. M2 LI
had a score of 0.139 while the M1 LI had a score
of 0.129. The difference in their BLEU-4 score is
explained by the M1 LI configuration's brevity
penalty of 0.879. All Model Two configurations
that used the linearly interpolated language model
received no brevity penalty (1.0), while M2 MLE
had a penalty of 0.806 and M1 MLE had a penalty
of 0.449. Thus while M2 LI and M1 LI both had
almost identical log n-gram scores, M2 LI
achieved a higher BLEU-4 score by not receiving
any brevity penalty.

5 Improvements
We believe that our alignment models would
benefit the most from incorporating part-of-speech
tags and other linguistic features and by including
the fertility modeling of IBM Model 3. As we saw
in the actual translation with the decoder, a better
language model can also never hurt.

6 Member Contributions
Todd implemented Model Two. Todd an Pavani
pair programmed the rest of the assignment. Todd
generated, organized, and formatted all results
while Pavani selected the examples and created
the graphs. Todd wrote Sections 1 through 3 of
the report while Pavani wrote the initial version of
Section 4 and Todd edited Section 4.

[10]

Figure 4.2.2: WER

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

M1 LI 0.6LM 0.4WA 1.000L

M1 MLE 0.6LM 0.4WA 1.000L

M2 LI 0.6LM 0.4WA 1.000L

M2 MLE 0.6LM 0.4WA 1.000L

M2 LI 0.4LM 0.6WA 1.000L

M2 LI 0.4LM 0.6WA 1.500L

M2 LI 0.6LM 0.4WA 1.125L

M2 LI 0.6LM 0.4WA 1.250L

M2 LI 0.6LM 0.4WA 1.375L

M2 LI 0.6LM 0.4WA 1.500L

 Figure 4.2.3a: BLEU-4

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14

M1 LI 0.6LM 0.4WA 1.000L

M1 MLE 0.6LM 0.4WA 1.000L

M2 LI 0.6LM 0.4WA 1.000L

M2 MLE 0.6LM 0.4WA 1.000L

M2 LI 0.4LM 0.6WA 1.000L

M2 LI 0.4LM 0.6WA 1.500L

M2 LI 0.6LM 0.4WA 1.125L

M2 LI 0.6LM 0.4WA 1.250L

M2 LI 0.6LM 0.4WA 1.375L

M2 LI 0.6LM 0.4WA 1.500L

Figure 4.2.3b: Log N-grams

-6 -5 -4 -3 -2 -1 0

M1 MLE 0.6LM 0.4WA

1.000L

M2 MLE 0.6LM 0.4WA

1.000L

M1 LI 0.6LM 0.4WA

1.000L

M2 LI 0.6LM 0.4WA

1.000L

Log 4-Gram

Log 3-Gram

Log 2-Gram

Log 1-Gram

