
CS 224N / Ling 280

Assignment 2: Word Alignment Models

Due Wed, 30 April 2008

0 Reading

Make sure that you’ve read Knight’s workbook and chapter 25 of J&M before attempting this
assignment.

1 Setup

We’ve put everything for this assignment in the directory:

/afs/ir/class/cs224n/pa2/java/ : the Java code provided for this course
/afs/ir/class/cs224n/pa2/data/ : the data sets used in this assignment

Copy over the new code to your local directory and make sure you can compile the code without
errors. (It’s Java 1.5.)

cd

mkdir -p cs224n/pa2

cd cs224n/pa2

cp -r /afs/ir/class/cs224n/pa2/java .

cd java

./ant

The most important class for this assignment is cs224n.assignments.WordAlignmentTester.
The main() method of this class takes several command line options. Set the CLASSPATH and
then try running it with:

java -server -Xmx500m cs224n.assignments.WordAlignmentTester \
-path /afs/ir/class/cs224n/pa2/data/ -model baseline -data miniTest -verbose

This will run a baseline model, which simply assigns alignments along the diagonal, on a toy set
of sentence pairs (see the description of miniTest below). The -verbose flag controls whether
the alignment matrices are printed. For the miniTest dataset, the baseline model isn’t so bad.
Of course, it doesn’t work nearly as well on real data which consists of parallel texts in English
and French from the Canadian Parliament. Your goal is to design and implement a WordAligner
class that can be passed into the WordAlignmentTester to accurately align words between parallel
sentences.

Start by looking in the data directory to see the source miniTest sentences. They are:

1

English

<s snum=1> A B C </s>

<s snum=2> A B </s>

<s snum=3> B C </s>

<s snum=4> D F </s>

French

<s snum=1> X Y Z </s>

<s snum=2> X Y </s>

<s snum=3> Y W Z </s>

<s snum=4> U V W </s>

Alignments

1 1 1 S

1 2 2 S

1 3 3 S

2 1 1 S

2 2 2 S

3 1 1 S

3 2 3 S

4 1 1 S

4 2 2 S

In the alignments file, the fields are snum, e, f, and S(ure)/P(ossible). A ‘Sure’ alignment is
where an alignment is clearly right, whereas a ‘Possible’ alignment is one that it is reasonable
to make but not so clear. (Commonly this is function words associated with the main semantic
content of a word. So, for the French word mangeaient ‘(they) were eating’, if it is part of
a sentence translated as The children were eating when we arrived, one would expect a Sure
alignment between mangeaient and eating and a Possible alignment between mangeaient and
were.) For our toy example, the intuitive alignment is X=A, Y=B, Z=C, U=D, V=F, and W=null. The
baseline model will get most of this set right, missing only the mid-sentence null:

[#] | Y

| W

[]| Z

------’

B C

The hashes indicate the proposed alignment pairs, while the brackets indicate reference pairs.
That is, the hashes are the alignments that your model is suggesting are correct, while the
brackets show the alignments that the supplied gold standard data think are correct. Square
brackets show Sure alignments, and parentheses – shown in the next alignment matrix, below –
indicate possible alignment positions. Your program only produces a binary notion of aligned
or not. Your goal is a model that puts a hash inside all square brackets, and it is okay but not
necessary if it also puts a hash inside parentheses. Any other hashes placed by your program
are deemed errors. At the end of the test output you get overall precision (with respect to
possible alignments), recall (with respect to sure alignments), and alignment error rate (AER).
This quantity can be thought of as similar to 1.0 − F1, where F1 is a harmonic mean of precision
and recall, but the Sure/Possible distinction complicates things. Put precisely, we have 3 sets
of alignments: the proposed alignment set of the model A, the Sure set S, and the Possible
set P , which we define as the union of the Sure and Possible alignments discussed above (i.e.,
everything in either square brackets or parentheses). Following Och and Ney (2000),1 we then
conceptually define:

Recall =
|A ∩ S|

|S|
Precision =

|A ∩ P |

|A|

and the measure we hence use is:

AER(S, P, A) = 1 −
|A ∩ S| + |A ∩ P |

|S| + |A|

Note that for this quantity to be zero, all sure alignments must be proposed, and all proposed
alignments must be possible ones.

1F. J. Och and H. Ney. 2000. Improved statistical alignment models. In ACL 38, pp. 440–447.

http://acl.ldc.upenn.edu/P/P00/P00-1056.pdf

2

You should also try running the code with -data validate and -data test, which will give
the validation set and test set respectively. Baseline AER on the test set should be 68.7 (lower is
better). You should try learning alignments on more than the test set, at least for simple models
(to investigate how much extra data helps). You can get an additional k sentences with the flag
-sentences k. Maximum values of k usable by your code will probably be between 10,000 and
100,000, depending on how much memory you have, and how you encode things. (There are a
million or so sentence pairs there if you want them — to use anywhere near that many, you’ll
have to change some of the starter code.)

You’ll notice that the code is hardwired to English-French, just as the examples in class were
presented. If you don’t speak any French, this assignment may be a little less fun, but French
has enough English cognates that you should still be able to sift usefully through the data. For
example, if you see the matrix

[#] | ils

[]() # | connaissent

| tres

| bien

[#] | le

[#] | probleme

() | de

[#] | surproduction

[#]| .

---------------------’

t k a t o p .

h n b h v r

e o o e e o

y w u r b

t p l

r e

o m

d

u

c

t

i

o

n

you should be able to tell that “problem” got handled correctly, as did “overproduction”, but
something went very wrong with the “know about” region, even without speaking any French.2

And other languages are available for the decoding step . . . see below!
A WordAligner comes with a static final String NULL WORD which you should use to repre-

sent the null word when aligning French words to English words. To implement a WordAligner
class, you must fill in the following methods:

• train(List〈SentencePair〉 trainingPairs). Trains the model from the supplied collection of
parallel sentences.

• getProbSourceGivenTarget(). Returns a CounterMap〈String,String〉 probSourceGivenTarget.
This CounterMap should be structured so that the first word is from the source language

2Franz Och, a well-known statistical MT researcher who now works on Google, is well-known for saying that

it’s preferable to work on statistical MT systems for languages you don’t know, as it leads you to concentrate

on the statistical essence of the data. We tend to disagree, but at any rate, this shows that trying to do this

assignment with no knowledge of French isn’t hopeless.

3

and the second from the target language. Therefore, if the goal is to translate from French
to English, the code probSourceGivenTarget.getCount(FrenchWord, EnglishWord) rep-
resents P (FrenchWord|EnglishWord), the probabilities estimated by your alignment
model. This method is used by the Decoder (see next section), so it doesn’t play a role in
building or testing the WordAligner (however, since you will probably have such a structure
in your WordAligner, it should be an easy function to write).

• getAlignmentProb(List〈String〉 targetSentence, List〈String〉 sourceSentence, Alignment align-
ment). Returns the probability, according to the model, of the specified alignment between
targetSentence and sourceSentence.

• alignSentencePair(SentencePair sentencePair). Returns the best Alignment between the two
sentences in sentencePair.

2 Three Basic Alignment Models

In this assignment, you will build several word-level alignment systems. As a first step, and to
get used to the data and support classes, build a replacement for BaselineWordAligner which
matches up words based on superficial statistics (some of the above functions will just be blank).
One common stab is to pair each French word f with the English word e for which the ratio

P (f, e)

P (f)P (e)

is greatest (the log of this measure is often referred to as “pointwise mutual information” in
the NLP literature). Other possibilities exist; play a little and see if you can detect any useful
translation pairs with such methods.

Once you’ve gotten a handle on the data and code, the first real model to implement is IBM
Model 1. Recall that in Models 1 and 2, the probability of an alignment a for a sentence pair
(f, e) is

P (f, a|e) =

lenf
∏

i=1

P (ai|i, lenf , lene)P (fi|eai
)

where the null English word is at position 0 (or −1, or whatever is convenient in your code).
The simplifying assumption in Model 1 is that

P (ai|i, lenf , lene) = P (ai) =
1

lene + 1

That is, all positions are equally likely. In practice, the null position is often given a different
likelihood, say 0.2, which doesn’t vary with the length of the sentence, and the remaining 0.8 is
split evenly amongst the other locations.

The iterative EM update for this model is very simple and intuitive. For every English word
type e, you count up how many French words are aligned with tokens of e (the answer will be a
fraction), as well as the distribution over those French words’ types. That will give you a new
estimate of the translation probabilities P (f |e), which leads to new alignment posteriors, and
so on. For the miniTest dataset, your Model 1 should learn most of the correct translations,
including aligning W with null. However, it will be confused by the DF / UV block, putting
each of U and V with each of D and F with equal likelihood (probably resulting in a single error,
depending on numerical precision issues).

Look at the alignments produced on the validation or test sets with your Model 1. You can
improve performance by training on additional sentences as mentioned above. However, even
if you do, you will still see many alignments which have errors sprayed all over the matrices,

4

errors which would be largely fixed by concentrating guesses near the diagonals. To address this
trend, you should now implement IBM Model 2, which changes only a single term from Model 1:
P (ai|i, lenf , lene) is no longer independent of i. A common choice is to have

P (ai|i, lenf , lene) ∝ d

(

bucket

(

ai − i
lene

lenf

))

Here, P (ai|i, lenf , lene) is parameterized by a rough displacement from the diagonal. Again, to
make this work well, one generally needs to treat the null alignment as a special case, giving a
constant chance for a null alignment (independent of position), and leaving the other positions
distributed as above. The function bucket maps real numbered displacements (normalized for
overall sentence length) to one of a number of categorical buckets. For instance, it might be
formed by just rounding the argument to the nearest integer, except for placing all displacements
greater than 5 in absolute value into two buckets for large positive and negative displacements.
How you bucket those displacements is up to you; there are many choices and most will give
similar behavior.

For each bucket j, you should have a parameter d(j) to indicate the probability of that
distortion. These parameters should be learned during the EM process. (It turns out that hand-
setting reasonable functions for d, instead of trying to learn parameters, can also work pretty
well. We’d like you to try to learn distortion parameters with the EM algorithm, but if you’re
having trouble getting that to work, try it with a hand-set distortion function first. Or possibly
fix the weights of the rare high distortion buckets and learn the rest. At any rate, report what
you did. (Dealing with distortions in some other sensible way could warrant credit.) If you run
your Model 2 on the miniTest dataset, it should get them all right (you may need to fiddle with
your null probabilities).

3 Decoding

Aligning words between parallel sentences is cool and all, but what we really want to see is
how well the computer can translate a sentence in one language (say French) into another (say
English). Recall from lecture that this is done by finding the English sentence

ê = argmax
e

P (f |e)P (e)

P (f |e) is estimated by the word alignment model you build for this assignment, and P (e) is
estimated by the language model you built for assignment one. All you need now is a decoder
to find the most probable English sentence and you will have a complete statistical machine
translation package!

Luckily for you guys, we provide you with such a decoder. Because the search space is
enormous it makes some simplifications. Instead of the above, it finds

ê, â = arg max
e,a

P (f, a|e)P (e)

Also, it does not actually find the optimal solution, but instead one that is pretty good.
Our particular implementation is a Greedy Decoder which starts by translating each word to its
most likely counterpart in the corresponding language; it then iteratively performs a series of
mutations, at each step choosing the one that leads to the greatest increase in probability. The
process stops once none of the mutations increase the translation’s probability. 3

We have tried to make the use of the Decoder as seamless as possible, but you will need to
do a few things:

3If you are interested you can read more about it in “Fast Decoding and Optimal Decoding in Machine

Translation” available at http://www.isi.edu/natural-language/projects/rewrite/decoder.pdf.

5

• Make sure you have implemented all the methods for the LanguageModel and the WordAligner
that were mentioned in the handout, as the Decoder assumes they are there.

• Look in assignments/DecoderTester.java and add code in the indicated places to set
options for your LanguageModel and WordAligner before training.

• Note the zferts.e file in the pa2/java directory. This file has a list of words that can be
inserted as zero fertility words (to again limit the search space). This file must be present
in the directory in which you are running the decoder for it to work properly.

Once you have done the above, you should be able to run DecoderTester. The relevant ar-
guments are -lmmodel -lmsentences -wamodel -wasentences -source -target for the lan-
guage model, number of language model training sentences, word alignment model, number of
word alignment model training sentence pairs, source language, and target language, respectively
(and of course any other options you include for your models). The languages currently available
for translating are German, Spanish, and French (either the source or the target language must
be English). If you have any other language requests, let us know and we will see if we can set
you up with it. (In particular, anything else from EuroParl – Danish, Greek, Finnish, Dutch,
Portuguese, or Swedish – would be easy to set up. Of course, parliamentary proceedings aren’t
the most thrilling of corpora so you could try to see what else is out there on the web)

After running DecoderTester, there will be some numbers that you can use to compare the
performance. “WER” is based on edit distance between the guessed and actual translations,
which is a rather poor measure of translation quality. The number shown in “BLEU” is BLEU-4
(equation (25.35) in J&M where N=4). When the translation quality is poor, the higher order
N-gram matches might be zero, therefore the log Ngram scores might be -Infinity, which cause
the BLEU score to be zero. In that case, you can compute BLEU-3 (or even BLEU-2) based
on the log Ngram scores and the brevity penalty (BP). When you report numbers, remember to
say if you’re using BLEU with lower order N-grams.

Update (04/21/2008): Read http://www.stanford.edu/class/cs224n/pa/pa2-dec.pdf for up-
dates on the decoder and what you should do with it.

4 Evaluation criteria

You should have three functional models: a non-iterative surface-statistics model, an implemen-
tation of Model 1, and an implementation of Model 2. Solid implementations of these models,
along with a good write-up with interesting data analysis is what is required to earn a full grade.
Your grade will depend on:

• Effective implementation of those models to get good results.

• A clear presentation of the algorithms you used and alternatives you tried.

• A discussion of the motivations for choices that you made and a description of the testing
that you did.

• Showing that your models use proper probability distributions.

• Insightful commentary on what kinds of things your models get right and get wrong, and
possible reasons why. Remember we are looking for careful and thorough error analysis to
be carried out during the process of improving your model, rather than being something
tacked on at the end. Some of the things you might consider include:

– Where word order differs between the languages does either model cope with this?
When does it work and not work?

6

– Does the model successfully insert needed function words into the output?

– Does the model more often wrongly align function words or content words?

– What are the most common sorts of wrong alignments? Aligning too many words to
a word, or completely wrong words?

• Ideas as to how to best improve the system, based on the above.

5 Extra Credit: Further Investigation

We will give up to 10% extra credit for innovative work going substantially beyond the minimal
requirements. The field of possibilities is wide open. Some options:

• Implement IBM Model 3 as described in Kevin Knight’s A Statistical MT Tutorial Work-

book.

• Implement the competitive linking algorithm from I. Dan Melamed, “Models of Transla-
tional Equivalence among Words”, Computational Linguistics, 2000. See

http://www.cs.nyu.edu/∼melamed/ftp/papers/clmote.pdf.

• Try out some of the ideas presented in Bob Moore’s “Association-Based Bilingual Word
Alignment” or “Improving IBM Word Alignment Model 1” (linked to from the course
website, under the 4/14 readings).

• (Probably the easiest for code-optimizers.) Scale your system up to a large amount of data
(defined as, say, running on at least 100K training sentences). Investigate the learning
curve as a function of training size.

Using some extra sentences and Model 2 or better, you should be able to get your AER down
below 40% very easily and below 35% fairly easily, but getting it much below 30% will likely
require greater effort.

6 Submitting the assignment

6.1 The program: electronic submission

You will submit your program code using a Unix script that we’ve prepared. To submit your
program, first put all the files to be submitted in one directory on a Leland machine (or any
machine from which you can access the Leland AFS filesystem). This should include all source
code files, but should not include compiled class files or large data files. Normally, your submis-
sion directory will have a subdirectory named src which contains all your source code. When
you’re ready to submit, please cd to your submission directory, and then type:

/afs/ir/class/cs224n/bin/submit-pa2

This will (recursively) copy everything in your submission directory into the official submis-
sion directory for the class. If you need to resubmit it type

/afs/ir/class/cs224n/bin/submit-pa2 -replace

We will compile and run your program on the Leland systems, using ant and our standard
build.xml to compile, and using java to run. So, please make sure your program compiles and
runs without difficulty on the Leland machines. If there’s anything special we need to know
about compiling or running your program, please include a README file with your submission.
Your code doesn’t have to be beautiful but we should be able to scan it and figure out what you
did without too much pain.

7

http://www.cs.nyu.edu/~melamed/ftp/papers/clmote.pdf

6.2 The report: turn in a hard copy

You should turn in a write-up of the work you’ve done, as well as the code. Your write-up

must be submitted as a hard copy. There is no set length for write-ups, but a ballpark
length might be 4 pages, including your evaluation results, a graph or two, and some interesting
examples.

8

	Reading
	Setup
	Three Basic Alignment Models
	Decoding
	Evaluation criteria
	Extra Credit: Further Investigation
	Submitting the assignment
	The program: electronic submission
	The report: turn in a hard copy

