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1 Introduction 
For PA1 we implemented the base unigram, bi-
gram and trigram models. We used Simple Good 
Turing (SGT) smoothing with simple backing off 
to lower order models when the conditional distri-
butions did not exist. We also implemented Katz 
backing off and mixed all of our models in vari-
ous ways using linear interpolation. Our linear in-
terpolation uses hill-climbing with a random walk 
to find weights that minimize the test perplexity of 
a validation set. Our best model based on test per-
plexity was a linear interpolation between an SGT 
unigram model, Katz bigram model, and Katz tri-
gram model. When training on the 40,000 sen-
tence corpus, the model has a test perplexity of 
181. When training on all of the available data (a 
little over one million sentences), the model has 
 test perplexity of 107. Our best model based on 
HUB WER is a linear interpolation between an 
MLE unigram model, MLE bigram model, and 
MLE trigram model. The model's best score of 
0.05 is achieved when training on a 460,000 sen-
tence corpus. 

2 Implementation Details 
In this section we will briefly cover the implemen-
tation of our models and the tricks/tweaks used to 
speed up mass evaluations of models. 

2.1 LanguageModelTester 
We augmented the main method of Lan-
guageModelTester to include extra options such 
as processing all models in mass and whether to 
perform a learning curve analysis on the given 
models. One can also choose whether to use the 
default weights in the linearly interpolated models 
or to perform a search that optimizes the weights 
using validation data and how many threads to use 
to find the linear interpolation weights of multiple 
models simultaneously. The first two options al-
lowed us to easily evaluate many models at once 
and to generate a learning curve for all of our 

models that includes 49 different training set sizes 
from 40,000 sentences to one million sentences. 
The threading option for finding weights from 
validation data drastically reduced the amount of 
time required to process our learning curve data 
since we searched for new optimal weights with 
each new training set size and the search time to-
taled at least half of the processing time. 

2.2 SuperHelper 
To eliminate duplicate computations when evalu-
ating multiple models, we perform all counting, 
smoothing, and probability distribution creation 
tasks within a class called SuperHelper. When 
given training sentences, SuperHelper increments 
its unigram, bigram, and trigram counters and re-
calculates the unigram, bigram, and trigram count 
of counts. This allows us to incrementally add 
training data when computing our learning curves 
and eliminates needing to reprocess sentences. 

When a model requests its respective prob-
ability distribution, the SuperHelper generates the 
distribution if it has not previously been gener-
ated. If the distribution was previously generated, 
such as when a different model using the same 
distribution as part of its model previously re-
quested the distribution, SuperHelper simply re-
turns the distribution from the previous calcula-
tion. SuperHelper clears all of its probability dis-
tributions when it receives new training data. 
Thus, for example, when evaluating SGTBigram, 
SGTTrigram, and all of the linearly interpolated 
models that include Simple Good Turing smooth-
ing, the bigram and trigram counts are smoothed 
once and the resulting two distributions are used 
by all of the models. 

2.3 Language Model Organization 
Each language model implements the Lan-
guageModel interface and has BaseLan-
guageModel at the root of its inherited ancestors. 
We modified the original LanguageModel inter-
face to make our task easier. BaseLanguageModel 
includes all of the common activities among all 



models, such as receiving a SuperHelper object, 
receiving training sentences, and calculating the 
probability of a sentence. 

MLEUnigram, MLEBigram, and MLETri-
gram directly inherit from BaseLanguageModel. 
MLETrigram contains MLEBigram, which is used 
when the two previous words that we are condi-
tioning on have not been seen together. Similarly, 
MLEBigram contains MLEUnigram, which is 
used as the probability distribution when there is 
no conditional distribution for the previous word. 

SGTUnigram, SGTBigram, and SGTTrigram 
are the Simple Good Turing smoothed models de-
scribed in Gale and Sampson 1995. They inherit 
from their respective MLE classes. SGTTrigram 
contains SGTBigram while SGTBigram contains 
SGTUnigram. To define these classes, we only 
had to override the getPD function to specify 
which probability distribution to use and, if appli-
cable, which lower order model to include. 

KatzBigram and KatzTrigram inherit from 
their respective MLE classes. KatzBigram con-
tains SGTUnigram while KatzTrigram contains 
KatzBigram. If the conditional probability does 
not exist, each class uses the lower-order model in 
the same fashion as our other models. 

Each linearly interpolated model includes 
some combination of the previously mentioned 
models. LinInterpBaseUB and LinInterpBaseUBT 
inherit from MLEBigram and MLETrigram re-
spectively and include the extra methods required 
to implement linear interpolation. Each of the ac-
tual linearly interpolated models, such as LinIn-
terpSGTUniSGTBiSGTTri which uses all SGT 
models, only have to override getPD and setDe-
faultWeights. 

2.4 Other Details 
We modified Counter to contain a double called 
zeroItemMass. zeroItemMass is zero by default, 
and is the value that Counter returns when the key 
does not exist. We use this for our SGT distribu-
tions. 

We use several other classes to perform vari-
ous tasks. FindWeights performs a variant of hill-
climbing with random walks to find the optimal 
set of weights for a linearly interpolated model. 
Results records various metrics such as processing 
time and perplexities for each model being evalu-
ated. ProcessLearningRate processes the learning 

rate output and generates a large CSV file that can 
be loaded into Excel to create graphs. 

3 The Language Models 
In this section we prove that our language models 
contain proper probability distributions. Our 
MLEUnigram model includes a pseudocount of 
one for the unknown token while the bigram and 
trigram counts do not include any pseudocount for 
the existence on the unknown token in any con-
text. The unknown token is treated as a explicit 
member of the vocabulary. 

We calculate all of our probabilities using the 
counts of each ngram and a counter that maps 
counts to the probability that an ngram will have 
in the distribution given it has the specific count. 
This map is produced from the count of counts. 
We create the probability distributions in this way 
because it was easier when doing Simple Good 
Turing smoothing. 

The probabilities for MLEUnigram, MLEBi-
gram, and MLETrigram are computed by the Su-
perHelper.empirical method. The SGT models use 
SuperHelper.simpleGoodTuring. The Katz models 
use SuperHelper.katzBackoff. 

3.1 MLEUnigram 
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3.2 MLEBigram 
For a given context (previous word) 1w , 
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3.3 MLETrigram 
For a given context 21ww , 
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3.4 SGTUnigram, SGTBigram, 
SGTTrigram 

We calculate the probabilities for all three SGT 
models using their count of counts data structure. 
Thus the process is identical for all three. We will 
show the case of a trigram. For the other two, just 
change w1w2 in all lines to either w1 or null as ap-
propriate. 
Note: COC(0, w1w2) is the number of zero count 

ngrams with w1w2 as the first two words and ze-
roMassw1w2 is the amount of zero mass assigned to 
the condition w1w2. 
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3.5 KatzBigram and KatzTrigram 
Katz backoff uses SGT probability distributions 
and gives the zero count mass that would nor-
mally be distributed evenly to the zero count 
events by SGT to a lower order model. We show 
the case of a trigram. The bigram case is the exact 
same, except that it uses PSGT(w) for the backoff 
part. Note: zeroMassSGT is the amount of zero 
mass assigned to the conditional distribution by 
SGT. 
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3.6 Linearly Interpolated Models 
All linearly interpolated models use weights that 
sum to one and always use some combination of 
the previously listed models. We present the case 
of LinInterpSGTUniSGTBiSGTTri. The other 
cases are identical. 
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4 Performance Analysis 

4.1 40,000 Sentence Training Set 
4.1.1 Test Set Perplexity 
Figure 4.1.1 shows the test set perplexity for most 
of our models when training on the 40,000 sen-
tence training set. SGTUnigram, MLEUnigram, 
KatzTrigram, and SGTTrigram are not included 
because they had large perplexities of 823, 896, 
2924, and 8380 respectively. Our best model, Lin-
InterpSGTUniKatzBiKatzTri, has a perplexity of 
181. As the figure shows, linearly interpolating 
between any of the base models is better than the 
base models themselves. Additionally, interpolat-
ing with unigram, bigram, and trigram models is 
always better than interpolating with unigram and 
bigram models. Amongst the unigram/bigram in-
terpolations, smoothing the unigram model seems 
to be more important than smoothing the bigram 
model. 

With the exception of LinInterpSGTUni-
KatzBiKatzTri, smoothing does not seem to be as 
important for the uni/bi/tri interpolations. Many of 
these different combinations of model interpola-
tions give scores that are only different by one or 
two units. Nevertheless, most of the interpolations 
with a smoothed unigram model have better per-
formance than without unigram smoothing. All in-
terpolations with at least two smoothed models 
perform better than the interpolations with only 
one smoothed model, but there is no clear indica-
tion for which model should ideally be smoothed. 
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Figure 4.1.1: Test Perplexity when training on the 

40,000 sentence training set. A larger version of this 
figure is on the last page. 

4.2 1 Million Sentence Training Set 
4.2.1 Test Set Perplexity 
Figure 4.2.1 shows the test set perplexity for most 
of our models when training on the 40,000 sen-
tence training set. Again, SGTUnigram, 
MLEUnigram, KatzTrigram, and SGTTrigram are 
not included because they had large perplexities 
of 628, 895, 906, and 1413 respectively. Our best 
model, LinInterpSGTUniKatzBiKatzTri, has a 
perplexity of 107. Similar to the 40,000 sentence 
training set case, interpolation is always better 
than each base model alone and uni/bi/tri interpo-
lation is always better than uni/bi interpolation. 
For uni/bi interpolation, smoothing the unigram 
model is still more important than smoothing the 
bigram model. An important note is that while the 
two uni/bi interpolations with non-smoothed uni-
gram models switched places, their scores are 
only different starting on the third decimal place. 

While LinInterpSGTUniKatzBiKatzTri re-
mains the best uni/bi/tri interpolation model, 
many of the other models moved around in the 
performance ranking. The best uni/bi/tri interpola-
tion model has a perplexity of 107.3614 while the 
worst has a score of 112.4313 – a difference of 5 
units between the best and worst. In the uni/bi in-
terpolation case, the best model has a score of 
162.9235 and the worst has a score of 166.4266 – 
a difference of 3.5 units between the best and 
worst. For the 40,000 sentence training set, the 
uni/bi/tri difference was 30.7 and the uni/bi differ-
ence was 26.2. This shows that as the training set 
size increases, the use of smoothed models within 
interpolation becomes less important. This is as 
expected because with a larger dataset we can 
trust the counts more. 
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Figure 4.2.1: Test Perplexity when training on the one 
million sentence training set. A larger version of this 

figure is on the last page. 



4.3 Learning Curves 
With the exception of LinInterpSGTUniKatzBi-
KatzTri, we recorded learning curve data for all of 
our models. We did not record learning curve data 
for LinInterpSGTUniKatzBiKatzTri because we 
created the model later than the other models and 
did not have time to compute the results. Our 
learning curve data contains training perplexity, 
test perplexity, and HUB WER for training set 
sizes ranging from 40,000 to 1,000,000 in 20,000 
sentence increments. 

4.3.1 Training Perplexity 
As expected for all models, the training perplexity 
increases as the training set size increases. This is 
because with more data points our models are less 
capable of fitting tightly to all data points. Figure 
4.3.1 shows the two bands with lowest perplexity. 
The lowest curve is the MLETrigram while the 
one immediately above it is SGTTrigram. These 
two curves are expected to be in this order be-
cause the MLETrigram maximizes the likelihood 
of the training data, and should thus give higher 
probability to the training set than smoothing the 
MLETrigram counts. The second band of curves 
contains all of the uni/bi/tri interpolation models. 
These models are roughly ordered by the amount 
of smoothing that occurs in each. The more mod-
els that are smoothed in the interpolation, the 
higher its training perplexity. 

4.3.2 Test Perplexity 
Figure 4.3.2 shows how using more data improves 
the performance of all of our models (except the 
unigram models, which remain fairly constant). 
We only included the linearly interpolated models 
because the others have far worse performance 
and would make the graph unreadable. All curves 
shown have a decreasing perplexity with a de-
creasing slope, but none of the curves appear to 
have leveled out yet. Thus we expect that more 
training data would continue to improve perform-
ance with some significant. 

The uni/bi interpolations form the top band 
with LinInterpMLEUniMLEBi being covered up 
by the LinInterpMLEUniSGTBi curve, which 
shows that when not smoothing the MLE unigram 
model, smoothing the bigram model has little ef-
fect. This top band clearly shows that smoothing 
the unigram model is always better (in terms of 
perplexity score) than using the MLE unigram 
model. Additionally, smoothing both is always a 
little better than only smoothing the unigram 
model. 

The lower band contains all of the uni/bi/tri 
interpolations. The highest curve in the lower 
band contains no smoothing on any of the inner 
models. As we move down to lower curves, the 
number of inner models that are smoothed gradu-
ally_increases. 

Training Set Size vs. Training Perplexity
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Figure 4.3.1: Training Perplexity Curves. 



Additionally, as the training set size increases, 
the difference between the scores of the best 
uni/bi interpolation and the worst uni/bi/tri inter-
polation increases. This suggests that the uni/bi/tri 
interpolation can make better use of the addition 
data, which is expected because with more data 
the inner trigram model becomes more useful. 

One can also see this in the optimal weights that 
are found for each model as the training set size 
increases. As the training set size increases, the 
amount of weight given to the unigram, and then 
later bigram, decreases because the trigram be-
comes more powerful. 

Training Set Size vs. Test Perplexity
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Figure 4.3.2: Test Perplexity Curves. 

 

4.3.3 Trigram Issues 
Our base trigram with smoothing, SGTTrigram, is 
able to almost perfectly fit the training data, but is 
absolutely pathetic on the test set. One can hardly 
see the existence of the training perplexity curve 
because it is between 10 and 30. The test perplex-
ity curve shows a pleasantly steep decrease in 
perplexity as the training set size increases, but it 

never even reaches the 900 or so perplexity of the 
MLE unigram model. We suspect that this is the 
case because we simply do not have enough data 
for the trigram model to be used by itself. The tri-
gram model is perfectly capable of overfitting the 
datasets that we had, but even one million sen-
tences is not enough to obtain accurate counts for 
each conditional probability distribution. 

SGTTrigram: Test and Train Perplexity
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Figure 4.3.4: SGTTrigram Training Perplexity and Test Perplexity Curves. 



4.3.4 HUB WER 
Figure 4.3.3 shows how erratic the HUB WER is. 
We obtain our lowest WER of exactly 0.05 with 
LinInterpMLEUniMLEBiMLETri and LinIn-
terpSGTUniMLEBiMLETri when training on a 
460,000 corpus. The majority of the models seem 
to reach their lowest WER around this point. The 
sweet spot in terms of training set size seems to be 
between 380,000 and 540,000 sentences. 

The erratic behavior is quite puzzling. Many 
curves overlap each other and cross over each 
other at various points. The two models that 
achieve a 0.05 score overlap the entire time except 
for the few lime green lines that are seen in sec-
tions such as around 740,000. Most of the curves 

bounce all over the place yet LinInterpSGTUni-
SGTBi flatlines from 500,000 to 920,000. 

Our only guess at why we see all of this 
strange behavior is that as the training set size in-
creases, the amount of probability mass allotted to 
zero count elements as well as to the unknown to-
ken changes drastically. This causes the jumpy, 
unpredictable behavior. For most models, the 
smaller training set sizes do not give a proper al-
lotment to the zero count elements and unknown 
token. These models hit their sweet spot for these 
allotments within the range from 380,000 to 
540,000 sentences. After that, the allotments be-
come too small, which causes each model's WER 
to become worse. 
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Figure 4.3.3: HUB WER Curves. 

 

4.4 Sentence Generation 
In this section we present several random sen-
tences generated by our LinInterpSGTUniKatz-
BiKatzTriLanguageModel model. Our model per-
formed well when producing short sentences such 
as "i would like to evaluate them", "this increase 
is vital in their lives", and "the debate is closed". 
At the same time, the model generated many sen-
tences that ended abruptly or missed a vital com-
ponent such as a verb. Some examples are: "the 
public and social justices" and "i welcome the 
prospect of the". Additionally, the model pro-
duced sentences that were too long and that feel 

more like multiple poorly written sentences stuck 
together. One such example is "the court of mak-
ing it on the hoof of the introduction of the tai-
wanese nineteen ninety contrary to the resolution 
we must never again congratulate mr de silguy for 
their contributions representing various new 
states". The previous sentence also has other prob-
lems that seemed frequent, such as saying "Court 
of Making It", which matches the often seen tem-
plate of "____ of ____" where the second blank is 
not a word that generally should go is such a se-
quence. 



4.5 Speech Recognition 
In this section we will cover some issues with the speech recognition problems using our LinIn-
terpSGTUniKatzBiKatzTriLanguageModel model. The most frequent problem seemed to be from the 
popularity of certain words such as "the". For example, our model chose "the fed spokesman declined to 
comment as usual" over "a fed spokesman declined to comment as usual". For many of these errors, we 
cannot think of any changes to our language models that would remedy the situation. We believe that one 
needs additional context to solve problems such as the fed spokesman lines. Without any additional in-
formation such as the previous and next sentences in the speech, many humans would simply be guessing 
between the two. 

Another example of an error that is due to one word being overly abundant is when our model chose 
"inevitably one child asks how did to get off the tape" over "inevitably one child asks how did you get off 
the tape". After analyzing the counts, there does not seem to be an easy fix to the situation because the 
training corpus contains the following counts: "how did to" = 0, "did to get" = 0, "to get off" = 1, "to get" 
= 114, "to" = 26,060, "how did you" = 0, "did you get" = 0, "you get off" = 0, "did you" = 8, "you get" = 
3, "you" = 2346. As one can see, the word "to" appears an order of magnitude more often than "you". The 
disparity balloons even more when using the one million sentence corpus. Due to these reasons, we be-
lieve there is no amount of smoothing or similar tricks that could solve this problem. The only potential 
improvements can come from other techniques such as incorporating parts of speech or other information 
beyond counts of ngrams. 

5 Member Contributions 
Todd implemented the Simple Good Turing smoothing, the linear interpolation weights optimization, and 
all optimizations involving the SuperHelper.  Todd and Pavani pair programmed the rest of the assign-
ment.  Todd wrote the entire report and collected all results.  Pavani created the graphs. 
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Figure 4.1.1: Test Perplexity when training on the 40,000 sentence training set. 
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Figure 4.2.1: Test Perplexity when training on the one million sentence training set. 


