

CS 224n Programming Assignment 1: Language Modeling

Todd Sullivan

todd.sullivan@cs.stanford.edu
Pavani Vantimitta
pavani@stanford.edu

1 Introduction
For PA1 we implemented the base unigram, bi-
gram and trigram models. We used Simple Good
Turing (SGT) smoothing with simple backing off
to lower order models when the conditional distri-
butions did not exist. We also implemented Katz
backing off and mixed all of our models in vari-
ous ways using linear interpolation. Our linear in-
terpolation uses hill-climbing with a random walk
to find weights that minimize the test perplexity of
a validation set. Our best model based on test per-
plexity was a linear interpolation between an SGT
unigram model, Katz bigram model, and Katz tri-
gram model. When training on the 40,000 sen-
tence corpus, the model has a test perplexity of
181. When training on all of the available data (a
little over one million sentences), the model has
 test perplexity of 107. Our best model based on
HUB WER is a linear interpolation between an
MLE unigram model, MLE bigram model, and
MLE trigram model. The model's best score of
0.05 is achieved when training on a 460,000 sen-
tence corpus.

2 Implementation Details
In this section we will briefly cover the implemen-
tation of our models and the tricks/tweaks used to
speed up mass evaluations of models.

2.1 LanguageModelTester
We augmented the main method of Lan-
guageModelTester to include extra options such
as processing all models in mass and whether to
perform a learning curve analysis on the given
models. One can also choose whether to use the
default weights in the linearly interpolated models
or to perform a search that optimizes the weights
using validation data and how many threads to use
to find the linear interpolation weights of multiple
models simultaneously. The first two options al-
lowed us to easily evaluate many models at once
and to generate a learning curve for all of our

models that includes 49 different training set sizes
from 40,000 sentences to one million sentences.
The threading option for finding weights from
validation data drastically reduced the amount of
time required to process our learning curve data
since we searched for new optimal weights with
each new training set size and the search time to-
taled at least half of the processing time.

2.2 SuperHelper
To eliminate duplicate computations when evalu-
ating multiple models, we perform all counting,
smoothing, and probability distribution creation
tasks within a class called SuperHelper. When
given training sentences, SuperHelper increments
its unigram, bigram, and trigram counters and re-
calculates the unigram, bigram, and trigram count
of counts. This allows us to incrementally add
training data when computing our learning curves
and eliminates needing to reprocess sentences.

When a model requests its respective prob-
ability distribution, the SuperHelper generates the
distribution if it has not previously been gener-
ated. If the distribution was previously generated,
such as when a different model using the same
distribution as part of its model previously re-
quested the distribution, SuperHelper simply re-
turns the distribution from the previous calcula-
tion. SuperHelper clears all of its probability dis-
tributions when it receives new training data.
Thus, for example, when evaluating SGTBigram,
SGTTrigram, and all of the linearly interpolated
models that include Simple Good Turing smooth-
ing, the bigram and trigram counts are smoothed
once and the resulting two distributions are used
by all of the models.

2.3 Language Model Organization
Each language model implements the Lan-
guageModel interface and has BaseLan-
guageModel at the root of its inherited ancestors.
We modified the original LanguageModel inter-
face to make our task easier. BaseLanguageModel
includes all of the common activities among all

models, such as receiving a SuperHelper object,
receiving training sentences, and calculating the
probability of a sentence.

MLEUnigram, MLEBigram, and MLETri-
gram directly inherit from BaseLanguageModel.
MLETrigram contains MLEBigram, which is used
when the two previous words that we are condi-
tioning on have not been seen together. Similarly,
MLEBigram contains MLEUnigram, which is
used as the probability distribution when there is
no conditional distribution for the previous word.

SGTUnigram, SGTBigram, and SGTTrigram
are the Simple Good Turing smoothed models de-
scribed in Gale and Sampson 1995. They inherit
from their respective MLE classes. SGTTrigram
contains SGTBigram while SGTBigram contains
SGTUnigram. To define these classes, we only
had to override the getPD function to specify
which probability distribution to use and, if appli-
cable, which lower order model to include.

KatzBigram and KatzTrigram inherit from
their respective MLE classes. KatzBigram con-
tains SGTUnigram while KatzTrigram contains
KatzBigram. If the conditional probability does
not exist, each class uses the lower-order model in
the same fashion as our other models.

Each linearly interpolated model includes
some combination of the previously mentioned
models. LinInterpBaseUB and LinInterpBaseUBT
inherit from MLEBigram and MLETrigram re-
spectively and include the extra methods required
to implement linear interpolation. Each of the ac-
tual linearly interpolated models, such as LinIn-
terpSGTUniSGTBiSGTTri which uses all SGT
models, only have to override getPD and setDe-
faultWeights.

2.4 Other Details
We modified Counter to contain a double called
zeroItemMass. zeroItemMass is zero by default,
and is the value that Counter returns when the key
does not exist. We use this for our SGT distribu-
tions.

We use several other classes to perform vari-
ous tasks. FindWeights performs a variant of hill-
climbing with random walks to find the optimal
set of weights for a linearly interpolated model.
Results records various metrics such as processing
time and perplexities for each model being evalu-
ated. ProcessLearningRate processes the learning

rate output and generates a large CSV file that can
be loaded into Excel to create graphs.

3 The Language Models
In this section we prove that our language models
contain proper probability distributions. Our
MLEUnigram model includes a pseudocount of
one for the unknown token while the bigram and
trigram counts do not include any pseudocount for
the existence on the unknown token in any con-
text. The unknown token is treated as a explicit
member of the vocabulary.

We calculate all of our probabilities using the
counts of each ngram and a counter that maps
counts to the probability that an ngram will have
in the distribution given it has the specific count.
This map is produced from the count of counts.
We create the probability distributions in this way
because it was easier when doing Simple Good
Turing smoothing.

The probabilities for MLEUnigram, MLEBi-
gram, and MLETrigram are computed by the Su-
perHelper.empirical method. The SGT models use
SuperHelper.simpleGoodTuring. The Katz models
use SuperHelper.katzBackoff.

3.1 MLEUnigram

   

 

  11

1















TotalCount
TotalCount

wC
TotalCount

TotalCount
wCwP

vocabularyw

vocabularywvocabularyw
MLE

3.2 MLEBigram
For a given context (previous word) 1w ,

   

 

  11

1

|

1

1

1

1

1

1
1















w
w

vocabularyww

vocabularyw wvocabularyw
MLE

TotalCount
TotalCount

wwC
TotalCount

TotalCount
wwCwwP

3.3 MLETrigram
For a given context 21ww ,

 

 

 

  11

1

|

21

21

21

21

21

21

21



















ww
ww

vocabularywww

vocabularyw ww

vocabularyw
MLE

TotalCount
TotalCount

wwwC
TotalCount

TotalCount
wwwC

wwwP

3.4 SGTUnigram, SGTBigram,
SGTTrigram

We calculate the probabilities for all three SGT
models using their count of counts data structure.
Thus the process is identical for all three. We will
show the case of a trigram. For the other two, just
change w1w2 in all lines to either w1 or null as ap-
propriate.
Note: COC(0, w1w2) is the number of zero count

ngrams with w1w2 as the first two words and ze-
roMassw1w2 is the amount of zero mass assigned to
the condition w1w2.

 

 
 

 
 

 
 

  

 
 

  

 
11

1

*
*

)1(

,0
1

*
*

)1(

,0

*
*)1(

||

|

2121

21

21

21

21

21

21

2121

21

21

21

21 21

21

2121

,0 21

,0
21

,0 21

,0

21

,0
21

,0
21

21














 

































 






































































































wwww

ww

ww
ww

ww

vocabularyw
wwwC

ww

vocabularyw
wwwCww

ww

vocabularyw
wwwC

ww

vocabularyw
wwwC ww

ww

vocabularyw
wwwC

SGT

vocabularyw
wwwC

SGT

vocabularyw
SGT

zeroMasszeroMass
zeroMass

TotalCountC
TotalCountC
zeroMass

wwCOC
zeroMass

wwwC
TotalCountC
zeroMass

wwCOC
zeroMass

TotalCountC
wwwCzeroMass

wwwPwwwP

wwwP

3.5 KatzBigram and KatzTrigram
Katz backoff uses SGT probability distributions
and gives the zero count mass that would nor-
mally be distributed evenly to the zero count
events by SGT to a lower order model. We show
the case of a trigram. The bigram case is the exact
same, except that it uses PSGT(w) for the backoff
part. Note: zeroMassSGT is the amount of zero
mass assigned to the conditional distribution by
SGT.

 

 
 

   
 

 
 

 
 

 
 

 
 

 
 

11

|
|

)1(

|
|1

|1

)1(

|

|

|

,0
2

,0
2

,0
2

,0
2

,0
21

,0
221

,0
21

21

21

21

21

21

21

21

21
























































































































zeroMasszeroMass

wwP
wwP
TzeroMassSG

TzeroMassSG

wwP
wwP

wwwP

TzeroMassSG

wwPww

wwwP

wwwP

vocabularyw
wwwC

Katz

vocabularyw
wwwC

Katz

vocabularyw
wwwC

Katz

vocabularyw
wwwC

Katz

vocabularyw
wwwC

Katz

vocabularyw
wwwC

Katz

vocabularyw
wwwC

SGT

vocabularyw
Katz



3.6 Linearly Interpolated Models
All linearly interpolated models use weights that
sum to one and always use some combination of
the previously listed models. We present the case
of LinInterpSGTUniSGTBiSGTTri. The other
cases are identical.

 

     

     

1111

||

||

,,;

321321321

321

321

213SGT23SGT3SGT

213SGT23SGT3SGT

321SGTTriGTUniSGTBiLinInterpS





















wwwwwwwww

www

www

wwwPwwPwP

wwwPwwPwP

wwwP

4 Performance Analysis

4.1 40,000 Sentence Training Set
4.1.1 Test Set Perplexity
Figure 4.1.1 shows the test set perplexity for most
of our models when training on the 40,000 sen-
tence training set. SGTUnigram, MLEUnigram,
KatzTrigram, and SGTTrigram are not included
because they had large perplexities of 823, 896,
2924, and 8380 respectively. Our best model, Lin-
InterpSGTUniKatzBiKatzTri, has a perplexity of
181. As the figure shows, linearly interpolating
between any of the base models is better than the
base models themselves. Additionally, interpolat-
ing with unigram, bigram, and trigram models is
always better than interpolating with unigram and
bigram models. Amongst the unigram/bigram in-
terpolations, smoothing the unigram model seems
to be more important than smoothing the bigram
model.

With the exception of LinInterpSGTUni-
KatzBiKatzTri, smoothing does not seem to be as
important for the uni/bi/tri interpolations. Many of
these different combinations of model interpola-
tions give scores that are only different by one or
two units. Nevertheless, most of the interpolations
with a smoothed unigram model have better per-
formance than without unigram smoothing. All in-
terpolations with at least two smoothed models
perform better than the interpolations with only
one smoothed model, but there is no clear indica-
tion for which model should ideally be smoothed.

0 100 200 300 400

LinInterpSGTUniKatzBiKatzTri
LinInterpSGTUniMLEBiSGTTri
LinInterpSGTUniSGTBiSGTTri
LinInterpMLEUniSGTBiSGTTri
LinInterpSGTUniSGTBiMLETri
LinInterpSGTUniMLEBiMLETri
LinInterpMLEUniMLEBiSGTTri
LinInterpMLEUniSGTBiMLETri
LinInterpMLEUniMLEBiMLETri

LinInterpSGTUniSGTBi
LinInterpSGTUniMLEBi
LinInterpMLEUniSGTBi
LinInterpMLEUniMLEBi

KatzBigram
SGTBigram

Test Perplexity
Figure 4.1.1: Test Perplexity when training on the

40,000 sentence training set. A larger version of this
figure is on the last page.

4.2 1 Million Sentence Training Set
4.2.1 Test Set Perplexity
Figure 4.2.1 shows the test set perplexity for most
of our models when training on the 40,000 sen-
tence training set. Again, SGTUnigram,
MLEUnigram, KatzTrigram, and SGTTrigram are
not included because they had large perplexities
of 628, 895, 906, and 1413 respectively. Our best
model, LinInterpSGTUniKatzBiKatzTri, has a
perplexity of 107. Similar to the 40,000 sentence
training set case, interpolation is always better
than each base model alone and uni/bi/tri interpo-
lation is always better than uni/bi interpolation.
For uni/bi interpolation, smoothing the unigram
model is still more important than smoothing the
bigram model. An important note is that while the
two uni/bi interpolations with non-smoothed uni-
gram models switched places, their scores are
only different starting on the third decimal place.

While LinInterpSGTUniKatzBiKatzTri re-
mains the best uni/bi/tri interpolation model,
many of the other models moved around in the
performance ranking. The best uni/bi/tri interpola-
tion model has a perplexity of 107.3614 while the
worst has a score of 112.4313 – a difference of 5
units between the best and worst. In the uni/bi in-
terpolation case, the best model has a score of
162.9235 and the worst has a score of 166.4266 –
a difference of 3.5 units between the best and
worst. For the 40,000 sentence training set, the
uni/bi/tri difference was 30.7 and the uni/bi differ-
ence was 26.2. This shows that as the training set
size increases, the use of smoothed models within
interpolation becomes less important. This is as
expected because with a larger dataset we can
trust the counts more.

0 50 100 150 200

LinInterpSGTUniKatzBiKatzTri
LinInterpSGTUniMLEBiSGTTri
LinInterpSGTUniSGTBiSGTTri

LinInterpMLEUniMLEBiSGTTri
LinInterpSGTUniSGTBiMLETri
LinInterpMLEUniSGTBiSGTTri
LinInterpSGTUniMLEBiMLETri
LinInterpMLEUniSGTBiMLETri
LinInterpMLEUniMLEBiMLETri

LinInterpSGTUniSGTBi
LinInterpSGTUniMLEBi
LinInterpMLEUniMLEBi
LinInterpMLEUniSGTBi

KatzBigram
SGTBigram

Test Perplexity
Figure 4.2.1: Test Perplexity when training on the one
million sentence training set. A larger version of this

figure is on the last page.

4.3 Learning Curves
With the exception of LinInterpSGTUniKatzBi-
KatzTri, we recorded learning curve data for all of
our models. We did not record learning curve data
for LinInterpSGTUniKatzBiKatzTri because we
created the model later than the other models and
did not have time to compute the results. Our
learning curve data contains training perplexity,
test perplexity, and HUB WER for training set
sizes ranging from 40,000 to 1,000,000 in 20,000
sentence increments.

4.3.1 Training Perplexity
As expected for all models, the training perplexity
increases as the training set size increases. This is
because with more data points our models are less
capable of fitting tightly to all data points. Figure
4.3.1 shows the two bands with lowest perplexity.
The lowest curve is the MLETrigram while the
one immediately above it is SGTTrigram. These
two curves are expected to be in this order be-
cause the MLETrigram maximizes the likelihood
of the training data, and should thus give higher
probability to the training set than smoothing the
MLETrigram counts. The second band of curves
contains all of the uni/bi/tri interpolation models.
These models are roughly ordered by the amount
of smoothing that occurs in each. The more mod-
els that are smoothed in the interpolation, the
higher its training perplexity.

4.3.2 Test Perplexity
Figure 4.3.2 shows how using more data improves
the performance of all of our models (except the
unigram models, which remain fairly constant).
We only included the linearly interpolated models
because the others have far worse performance
and would make the graph unreadable. All curves
shown have a decreasing perplexity with a de-
creasing slope, but none of the curves appear to
have leveled out yet. Thus we expect that more
training data would continue to improve perform-
ance with some significant.

The uni/bi interpolations form the top band
with LinInterpMLEUniMLEBi being covered up
by the LinInterpMLEUniSGTBi curve, which
shows that when not smoothing the MLE unigram
model, smoothing the bigram model has little ef-
fect. This top band clearly shows that smoothing
the unigram model is always better (in terms of
perplexity score) than using the MLE unigram
model. Additionally, smoothing both is always a
little better than only smoothing the unigram
model.

The lower band contains all of the uni/bi/tri
interpolations. The highest curve in the lower
band contains no smoothing on any of the inner
models. As we move down to lower curves, the
number of inner models that are smoothed gradu-
ally_increases.

Training Set Size vs. Training Perplexity

9

14

19

24

29

34

40
00

0

80
00

0

12
00

00

16
00

00

20
00

00

24
00

00

28
00

00

32
00

00

36
00

00

40
00

00

44
00

00

48
00

00

52
00

00

56
00

00

60
00

00

64
00

00

68
00

00

72
00

00

76
00

00

80
00

00

84
00

00

88
00

00

92
00

00

96
00

00

10
00

00
0

Training Set Size

Tr
ai

ni
ng

 P
er

pl
ex

it
y

MLETrigram

SGTTrigram

LinInterpSGTUniSGTBiSGTTri

LinInterpSGTUniMLEBiSGTTri

LinInterpSGTUniSGTBiMLETri

LinInterpSGTUniMLEBiMLETri

LinInterpMLEUniMLEBiMLETri

LinInterpMLEUniSGTBiSGTTri

LinInterpMLEUniSGTBiMLETri

LinInterpMLEUniMLEBiSGTTri

Figure 4.3.1: Training Perplexity Curves.

Additionally, as the training set size increases,
the difference between the scores of the best
uni/bi interpolation and the worst uni/bi/tri inter-
polation increases. This suggests that the uni/bi/tri
interpolation can make better use of the addition
data, which is expected because with more data
the inner trigram model becomes more useful.

One can also see this in the optimal weights that
are found for each model as the training set size
increases. As the training set size increases, the
amount of weight given to the unigram, and then
later bigram, decreases because the trigram be-
comes more powerful.

Training Set Size vs. Test Perplexity

100

120

140

160

180

200

220

240

260

40
00

0

80
00

0

12
00

00

16
00

00

20
00

00

24
00

00

28
00

00

32
00

00

36
00

00

40
00

00

44
00

00

48
00

00

52
00

00

56
00

00

60
00

00

64
00

00

68
00

00

72
00

00

76
00

00

80
00

00

84
00

00

88
00

00

92
00

00

96
00

00

10
00

00
0

Training Set Size

Te
st

 P
er

pl
ex

it
y

Li nInterpSGTUniSGTBi

Li nInterpMLEUni MLEBi

Li nInterpMLEUni SGTBi

Li nInterpSGTUniMLEBi

Li nInterpSGTUniSGTBi SGTTri

Li nInterpSGTUniMLEBiSGTTri

Li nInterpSGTUniSGTBi MLETri

Li nInterpSGTUniMLEBiMLETri

Li nInterpMLEUni MLEBiMLETri

Li nInterpMLEUni SGTBiSGTTri

Li nInterpMLEUni SGTBiMLETri

Li nInterpMLEUni MLEBiSGTTri

Figure 4.3.2: Test Perplexity Curves.

4.3.3 Trigram Issues
Our base trigram with smoothing, SGTTrigram, is
able to almost perfectly fit the training data, but is
absolutely pathetic on the test set. One can hardly
see the existence of the training perplexity curve
because it is between 10 and 30. The test perplex-
ity curve shows a pleasantly steep decrease in
perplexity as the training set size increases, but it

never even reaches the 900 or so perplexity of the
MLE unigram model. We suspect that this is the
case because we simply do not have enough data
for the trigram model to be used by itself. The tri-
gram model is perfectly capable of overfitting the
datasets that we had, but even one million sen-
tences is not enough to obtain accurate counts for
each conditional probability distribution.

SGTTrigram: Test and Train Perplexity

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

40
00

0

80
00

0

12
00

00

16
00

00

20
00

00

24
00

00

28
00

00

32
00

00

36
00

00

40
00

00

44
00

00

48
00

00

52
00

00

56
00

00

60
00

00

64
00

00

68
00

00

72
00

00

76
00

00

80
00

00

84
00

00

88
00

00

92
00

00

96
00

00

10
00

00
0

Training Set Size

 P
er

pl
ex

it
y

Training Perplexi ty

Test Perplexity

Figure 4.3.4: SGTTrigram Training Perplexity and Test Perplexity Curves.

4.3.4 HUB WER
Figure 4.3.3 shows how erratic the HUB WER is.
We obtain our lowest WER of exactly 0.05 with
LinInterpMLEUniMLEBiMLETri and LinIn-
terpSGTUniMLEBiMLETri when training on a
460,000 corpus. The majority of the models seem
to reach their lowest WER around this point. The
sweet spot in terms of training set size seems to be
between 380,000 and 540,000 sentences.

The erratic behavior is quite puzzling. Many
curves overlap each other and cross over each
other at various points. The two models that
achieve a 0.05 score overlap the entire time except
for the few lime green lines that are seen in sec-
tions such as around 740,000. Most of the curves

bounce all over the place yet LinInterpSGTUni-
SGTBi flatlines from 500,000 to 920,000.

Our only guess at why we see all of this
strange behavior is that as the training set size in-
creases, the amount of probability mass allotted to
zero count elements as well as to the unknown to-
ken changes drastically. This causes the jumpy,
unpredictable behavior. For most models, the
smaller training set sizes do not give a proper al-
lotment to the zero count elements and unknown
token. These models hit their sweet spot for these
allotments within the range from 380,000 to
540,000 sentences. After that, the allotments be-
come too small, which causes each model's WER
to become worse.

Training Set Size vs. HUB WER

0.05

0.055

0.06

0.065

0.07

0.075

0.08

40
00

0
80

00
0

12
00

00

16
00

00

20
00

00
24

00
00

28
00

00

32
00

00

36
00

00
40

00
00

44
00

00

48
00

00

52
00

00
56

00
00

60
00

00

64
00

00
68

00
00

72
00

00

76
00

00

80
00

00
84

00
00

88
00

00

92
00

00

96
00

00
10

00
00

0

Training Set Size

H
U

B
 W

ER

LinInterpSGTUniSGTBi

LinInterpMLEUniMLEBi

LinInterpMLEUniSGTBi

LinInterpSGTUniMLEBi

LinInterpSGTUniSGTBi SGTTri

LinInterpSGTUniMLEBiSGTTri

LinInterpSGTUniSGTBi MLETri

LinInterpSGTUniMLEBiMLETri

LinInterpMLEUniMLEBiMLETri

LinInterpMLEUniSGTBiSGTTri

LinInterpMLEUniSGTBiMLETri

LinInterpMLEUniMLEBiSGTTri

Figure 4.3.3: HUB WER Curves.

4.4 Sentence Generation
In this section we present several random sen-
tences generated by our LinInterpSGTUniKatz-
BiKatzTriLanguageModel model. Our model per-
formed well when producing short sentences such
as "i would like to evaluate them", "this increase
is vital in their lives", and "the debate is closed".
At the same time, the model generated many sen-
tences that ended abruptly or missed a vital com-
ponent such as a verb. Some examples are: "the
public and social justices" and "i welcome the
prospect of the". Additionally, the model pro-
duced sentences that were too long and that feel

more like multiple poorly written sentences stuck
together. One such example is "the court of mak-
ing it on the hoof of the introduction of the tai-
wanese nineteen ninety contrary to the resolution
we must never again congratulate mr de silguy for
their contributions representing various new
states". The previous sentence also has other prob-
lems that seemed frequent, such as saying "Court
of Making It", which matches the often seen tem-
plate of "____ of ____" where the second blank is
not a word that generally should go is such a se-
quence.

4.5 Speech Recognition
In this section we will cover some issues with the speech recognition problems using our LinIn-
terpSGTUniKatzBiKatzTriLanguageModel model. The most frequent problem seemed to be from the
popularity of certain words such as "the". For example, our model chose "the fed spokesman declined to
comment as usual" over "a fed spokesman declined to comment as usual". For many of these errors, we
cannot think of any changes to our language models that would remedy the situation. We believe that one
needs additional context to solve problems such as the fed spokesman lines. Without any additional in-
formation such as the previous and next sentences in the speech, many humans would simply be guessing
between the two.

Another example of an error that is due to one word being overly abundant is when our model chose
"inevitably one child asks how did to get off the tape" over "inevitably one child asks how did you get off
the tape". After analyzing the counts, there does not seem to be an easy fix to the situation because the
training corpus contains the following counts: "how did to" = 0, "did to get" = 0, "to get off" = 1, "to get"
= 114, "to" = 26,060, "how did you" = 0, "did you get" = 0, "you get off" = 0, "did you" = 8, "you get" =
3, "you" = 2346. As one can see, the word "to" appears an order of magnitude more often than "you". The
disparity balloons even more when using the one million sentence corpus. Due to these reasons, we be-
lieve there is no amount of smoothing or similar tricks that could solve this problem. The only potential
improvements can come from other techniques such as incorporating parts of speech or other information
beyond counts of ngrams.

5 Member Contributions
Todd implemented the Simple Good Turing smoothing, the linear interpolation weights optimization, and
all optimizations involving the SuperHelper. Todd and Pavani pair programmed the rest of the assign-
ment. Todd wrote the entire report and collected all results. Pavani created the graphs.

0 100 200 300 400

LinInterpSGTUniKatzBiKatzTri
LinInterpSGTUniMLEBiSGTTri
LinInterpSGTUniSGTBiSGTTri
LinInterpMLEUniSGTBiSGTTri
LinInterpSGTUniSGTBiMLETri
LinInterpSGTUniMLEBiMLETri
LinInterpMLEUniMLEBiSGTTri
LinInterpMLEUniSGTBiMLETri
LinInterpMLEUniMLEBiMLETri

LinInterpSGTUniSGTBi
LinInterpSGTUniMLEBi
LinInterpMLEUniSGTBi
LinInterpMLEUniMLEBi

KatzBigram
SGTBigram

Test Perplexity

Figure 4.1.1: Test Perplexity when training on the 40,000 sentence training set.

0 50 100 150 200

LinInterpSGTUniKatzBiKatzTri
LinInterpSGTUniMLEBiSGTTri
LinInterpSGTUniSGTBiSGTTri

LinInterpMLEUniMLEBiSGTTri
LinInterpSGTUniSGTBiMLETri
LinInterpMLEUniSGTBiSGTTri
LinInterpSGTUniMLEBiMLETri
LinInterpMLEUniSGTBiMLETri
LinInterpMLEUniMLEBiMLETri

LinInterpSGTUniSGTBi
LinInterpSGTUniMLEBi
LinInterpMLEUniMLEBi
LinInterpMLEUniSGTBi

KatzBigram
SGTBigram

Test Perplexity

Figure 4.2.1: Test Perplexity when training on the one million sentence training set.

