

That Dog Thing

Todd Sullivan

todd.sullivan@cs.stanford.edu
Nuwan I. Senaratna

nuwans@cs.stanford.edu
Lawrence McAfee

lcmcafee@stanford.edu

1 Introduction
The task of making a robot dog walk across hilly
terrain towards a goal is surprisingly difficult. A
simple A-Star search is doomed to fail from the
beginning simply because of the astronomically
large number of steps that the dog can take while
at each location on the terrain. In our effort to
create a dog that can successfully navigate a level
three terrain we:
 abstracted the problem to a generic setting
 created several classifiers using a multitude

of features to predict when steps will fail in
the simulator,

 created an automatic system for collected
data for the classifiers and for algorithm
analysis,

 developed a high level search to find an ade-
quate path along the terrain,

 made the dog try to turn towards goals in-
stead of sidestepping or walking backwards,

 and created many visualization and analysis
tools to help us analyze our algorithms.

The result of our effort is a capable dog that can
efficiently navigate most difficult terrains.

2 Problem Abstraction
We began by abstracting the problem into conven-
ient classes that allow us to operate without deal-
ing with specific data structures from the simula-
tor such as bduVec3f. We constructed many
classes such as Point, State, Action, QueueNode,
SuccessorGenerator, and Agent that allow us to
easily manage the search process in a more ge-
neric way than using the simulator's data struc-
tures and methods.

The Point class holds a point in n-dimensional
space, where n is any integer greater than or equal
to one. The state of the robot at a given location
on the map is encompassed in the State class,
which holds one three-dimensional Point object
for each of the four feet. The Action class man-

ages the information pertaining to moving a single
foot to a location on the terrain. The Action class
contains an integer value signifying which foot
the action corresponds to and a three-dimensional
point holding the location on the terrain where the
foot will move. SuccessorGenerator accepts a
State object as input and produces successor states
by applying actions to the input. QueueNode con-
tains an Action object and a State object and
stores the path cost, heuristic cost, and other path
information such as the sequence of steps that lead
to the QueueNode's state. Finally, the Agent class
uses all of the other classes to perform an A-Star
search that finds a sequence of steps that success-
fully take the dog from the start to the goal.

2.1 Successor Generator
One of the immediate challenges in searching for
a sequence of steps is the size of the search space.
The SuccesorGenerator class is capable of produc-
ing successors in multiple ways, some of which
alleviate many memory problems that arise from
holding many states in memory. We produce new
states by creating a grid centered on each foot and
returning a new state for each square in the four
grids (except the four center squares where the
parent's feet are located). We can easily change
the distance between squares in the grid and size
of the grid by calling the SuccessorGenerator's
initialization function. Through trail and error, we
found that a five-by-five grid with five cm be-
tween each square center works best. For maxi-
mizing the score in the competition, we reduce the
step size to one cm when the robot is close to the
goal.

Through the initialization function we can
also change the order that the successors are pro-
duced. The class can produce all of the successors
at once (Type A), produce successors in sets with
the outer ring of the grid produced first and the
innermost ring produced lasted (Type B), and pro-
duce sets as in the previous method except within
a single ring only producing every other successor

the first time and then produce the other half of
successors in the ring the second time (Type C).
For Type B and Type C, after producing one
round of successors we add the parent back to the
fringe. Figure 2.1 shows the successor generation
order for a single foot using the various methods.

Figure 2.1: The successor generation types.

Producing the outer ring first essentially

makes the dog only consider large steps. If all of
the large steps and their children fail or are worse
than the parent, then the dog will return to the par-
ent state and the successor generator will produce
smaller steps. This drastically reduces the amount
of QueueNodes in the fringe, which solves a
memory problem that our first implementation
experienced. As discussed in Section 7, after cre-
ating the milestone we were able to optimize our
memory management pertaining to QueueNodes
and we no longer needed the tricks from the Suc-
cessorGenerator to save memory. The foot order
of the successors is also dependent on the parent's
action's foot value. We rotate the order of foot
generation each time so that if the previous step
was with the front-left foot then the front-right
foot's successors will be generated first, if the pre-
vious step was with the front-right foot then the
back-left foot's successors will be generated first,
etc.

3 Step Classifier
Due to the computational intensity of simulating a
step, we use a classifier to predict the success or
failure of a given state/action pair in the simulator.
We created a base class called LogClassifier from
which all classifiers inherit, including none logis-
tic classifiers for legacy reasons. The base class
contains methods for loading a classifier's parame-
ters, writing a feature vector given a state/action
pair, making a prediction given a feature vector,
training all four feet given a training set of
state/action pairs, and saving a classifier's parame-
ters to a file. By requiring that all classifiers in-
herit from LogClassifier and that all classifiers
override several required functions, we can test
classifiers in the Agent class in a simple plug-and-
play manner.
 The basic features of all step classifiers
are the (x,y,z) values of each foot and the (x,y,z)
value of the action. As the project's development
progressed, we added additional features that most
classifiers have the ability to use. These addi-
tional features are described in Section 3.4.

3.1 Logistic Classifier
We created a logistic classifier by inheriting from
LogClassifier and overriding a few functions.
Namely, we override the function that writes fea-
tures given a state/action pair, the function that re-
turns the name of the classifier, and the function
that returns the number of features that the classi-
fier uses. We used the Newmat C++ matrix li-
brary to calculate the Hessian during training [1].

The logistic classifier, called doesItAll_LC,
allows for a variable number of features by ac-
cepting a vector of bitsets that signify which fea-
tures to use. Each bitset in the vector signifies a
power to add to the classifier's features while each
bit in a bitset tells the classifier whether to use a
specific feature. As an example, to define a clas-
sifier that includes all of the base features and the
square of all of the base features, we can pass a
vector to doesItAll_LC that contains two bitsets
with all bits set to one. If we want to also include
the third power of all the base features, we can
place another bitset on the end of the vector. Ad-
ditionally, if we want to exclude a certain feature,
such as the third power of the x value of the ac-
tion, then in the third bitset in our vector, we can
set the bit corresponding to the x value of the ac-

tion to zero. doesItAll_LC also contains extra
functions that allow us to write static classifiers to
files based on a given vector of bitsets. These
static classifiers, such as doesItAll_All3_LC, do
not have to process a vector of bitsets when writ-
ing each feature vector and, from our tests of writ-
ing 100,000 feature vectors, can write the feature
vectors 1.23 times faster than doesItAll_LC.

3.2 Data Collection
We collect data by writing successful steps and
failed steps to separate files. Each line of these
files contains the (x,y,z) values of all four feet, the
foot of the action, the (x,y,z) values of the action,
two slopes of the terrain at each foot (one in the x
direction, one in the y direction), a marker for
which map run the line corresponds to, the ID of
the parent QueueNode, and the ID of the current
QueueNode. We include the two slopes for us as
better features as described in Section 3.4. We
planned to use the map marker and QueueNode
IDs to create a classifier that would try to predict
when a step leads to many steps in the future that
fail, but we ran out of time and did not create this
classifier. We collect data through a feedback
loop, and we parse the data using the GoodBad-
Parser class.

Our final dataset consists of 206,408 unique
failed steps and 50,195 unique successful steps
gathered from searches on random terrains with
roughly an equal number of all terrain difficulty
levels. We used the feedback loop in the next sec-
tion to automatically generate the dataset from
three machines. We also generated all of the data
using our high level search in Section 4 and our
hardwired classifier in Section 3.6.

3.2.1 Feedback Loop
We use a feedback loop to automatically gather
data from multiple terrains. The loop continually
creates a random terrain of a given level and exe-
cutes a search for the goal on the terrain. We can
specify the level from the command line. We can
also choose to cycle the level between 0, 1, 2 and
3 every n iterations, or have the loop cycle the
level after every search. Additionally, the loop
can use a step classifier and retrain the step classi-
fier using all of the data gathered every x itera-
tions.

3.2.2 GoodBadParser
The GoodBadParser class reads datasets into the
structures gbpData and gbpSet. It includes func-
tions to prune duplicate entries based on the hash
of the state, action, and slopes (hashes described
in Section 7), separate datasets into datasets based
on feet, separate datasets into train, cross valida-
tion, and testing sets, and equalize datasets so that
the number of good and bad entries are equal. We
equalize datasets by randomly duplicating entries
in the smaller set.

3.3 Cross Validation
We created the CrossValidation class to test the
effectiveness of our step classifiers. The class ac-
cepts a vector of classifiers and a path to the train-
ing, cross validation, and testing sets and writes
the classification results to a file of comma sepa-
rated values that can we view in Excel or OpenOf-
fice.org's Spreadsheet. For each classifier and
dataset pair, the class computes the average error
on failed steps, average error on successful steps,
average error on all steps, and the processing time
in milliseconds to classify all examples in the
dataset. The class also reports the best classifier
based on the average error from the cross valida-
tion set.

3.4 Better Features
Using the cross validation class on our final data-
set, our best logistic classifier uses the (x,y,z) of
all four feet , the (x,y,z) of the action, and the
squares and cubes of these values. Our best logis-
tic classifier has 1.46% average error on failed
steps, 71.24% average error on successful steps,
and 7.2% average error on all steps. The high bias
towards correctly classifying failed steps is due to
the four to one ratio of failed to successful steps in
our dataset.

Using the classifier resulted in total failure on
most maps because the classifier threw away all of
the potentially successful steps and the dog was
left with only a few options that generally led to
dead ends. We tried biasing the classifier towards
predicting steps to be successful by moving the
decision boundary from zero into the negative
numbers. While this reduced the number of suc-
cessful steps that the classifier threw away, it in-
correctly classified too many failed steps to be
useful. We also tried training on an equalized set,

which had similar results to moving the decision
boundary.

In previous tests with datasets consisting of
only flat terrain, the logistic classifier was suffi-
cient for walking to a goal. As seen from our re-
sults with datasets containing searches through all
levels of terrain, our basic feature set is insuffi-
cient for correctly predicting if a state/action pair
will result in a successful step in simulation. To
improve our performance, we incorporated addi-
tional features into our classifier.

Aside from the features we previously de-
scribed, we also included the two slopes of the ter-
rain at each foot, the distance between each slope
(treating the two slopes of each foot as single 2-
dimensional points), and the distance between
each foot. After adding these additional features,
we have thirty-five base features instead of the
original fifteen. Adding addition powers of each
feature increases the feature count of a classifier
even more. To decide which features improve
classification performance, we created the Fea-
turePicker class that greedily finds the best feature
set.

3.4.1 The Logistic Feature Picker
The FeaturePicker class takes a path to a dataset
collection as input and uses doesItAll_LC to
greedily find a good set of features for a given
foot by minimizing the cross validation set's aver-
age error. We allow the class to choose single
powers, squares, and cubes of each base feature.
We start the process by creating a vector that con-
tains three randomly initialized bitsets of size
thirty-five. At each iteration, we train the classi-
fier with the new feature set and the training set in
the dataset collection. We then compute the error
using the cross validation set and keep the feature
set if the average error is less than the previous
best average error.

After either keeping the current feature set or
reverting to the previous best, we pick a random
number of bits to flip in each bitset. At the begin-
ning of the process, the max number of bits we al-
low to flip per bitset is two-thirds of the size of
the bitset. After every 5 iterations, we decrease
the max number of bits we can flip by one until
the max number is equal to one.

3.4.2 Results
After running FeaturePicker multiple times

for the front-left foot, the best feature set had
1.8% average error on failed steps, 60.4% average
error on successful steps, and 6.6% average error
on all steps. Figure 3.4.2 shows the 73 features
and corresponding vector of bitsets chosen by the
FeaturePicker class for the front-left foot. With-
out selectively picking features and instead using
all of the base features plus their squares and
cubes, the classifier had 1.5% average error on
failed steps, 61.4% average error on successful
steps, and 6.4% average error on all steps. While
the non-selective classifier had lower overall er-
ror, the FeaturePicker-based classifier had a lower
average error on successful steps.

One benefit of the FeaturePicker-based classi-
fier is that it has comparable average error yet it
uses fewer features. In our case, our best feature
set contains 73 features while using the non-
selective classifier uses 106 features. By writing
and classifying 100,000 feature vectors and re-
cording the execution time, we found that the Fea-

turePicker-based classifier is 1.32 times faster
than the non-selective classifier. Of course, the
longer classifier only took 11.990 seconds, so
both classifiers are sufficiently fast.

3.5 Better Classifiers
While the additional features certainly improved
our classification prospects, a better classification
method could also help. We implemented a Naïve
Bayes classifier by inheriting from LogClassifier
in a similar way to our logistic classifier classes.
We also used Support Vector Machines by creat-
ing a wrapper around the LIBSVM library [2].

3.5.1 Naïve Bayes
We tried Naïve Bayes because it is relatively sim-
ple to implement and the training and prediction
time is significantly less than logistic regression
or Support Vector Machines. The two best Naïve
Bayes classifiers used all 35 features. The first
classifier also used all squares and cubes, while
the second classifier used squares, cubes, and
fourth powers. We did not apply FeaturePicker to
Naïve Bayes and instead always used all 35 fea-
tures at each power level.

Through training and evaluating on our final
dataset, the first classifier had 2.98% average er-
ror on failed steps, 75.62% average error on suc-
cessful steps, and 8.56% average error on all steps
while the second classifier had 28.84% average
error on failed steps, 28.74% average error on suc-
cessful steps, and 28.83% average error on all
steps. The first classifier wrote and classified all
of the feature vectors in the cross validation set in
609 milliseconds while the second classifier took
790 milliseconds. While the Naïve Bayes classi-
fiers were fast, the first classifier was not as good
as our best logistic classifier. Even though the
second classifier had significantly less error on
successful steps in comparison with our best lo-
gistic classifier, the failed step error was too high.
A very low failed step error is required because
there are substantially more failed steps in the
search space than successful steps. For example,
misclassifying 28% of the failed steps in our final
dataset corresponds to misclassifying 57,794 steps
while misclassifying 28% of the successful steps
corresponds to misclassifying 14,054 steps. From
our observations, our dataset's four to one ration
between failed and successful steps is similar or
worse in all difficult terrains.

3.5.2 Support Vector Machines
The LIBSVM package supports using SVMs with
various kernels. We tested SVMs using all 35
features and using LIBSVM's built-in polynomial,
and radial basis function kernels. We ran tests on
the polynomial kernel to find the best polynomial
degree and C value. We also ran tests on the ra-
dial basis function kernel to find its best gamma
and C value. As suggested by LIBSVM's guide,
we found the best parameter values by using cross
validation on exponentially increasing values of
C. Thus for the polynomial kernel, we trained an
SVM for degrees 2, 3, and 4 with C values of 2-5,
2-4, 2-3, .., 214, 215. We tested the radial basis func-
tion kernels in a similar manner, except we also
used the exponentially increasing values for
gamma in the range 2-15 to 23.

Despite LIBSVM's guide suggesting that the
radial basis function kernel usually works best, we
found that the radial basis function kernel per-
formed horribly for all parameter values. Table 1
in the Appendix shows the results of testing radial
basis function kernels and polynomial kernels on
a dataset for the front-left foot that did not contain
level three searches. After our preliminary test-
ing, we tested the polynomial kernel with different
parameter values on the final dataset for the front-
left foot. The results for this test are in Table 2 in
the Appendix.

The SVM that we chose to use in our compe-
tition submission had a polynomial degree of
three and a C value of 98,304. This classifier had
average test error of 1.48% on failed steps,
48.32% on successful steps, and 5.33% on all
steps. This is significantly better than our best lo-
gistic classifier's 61.4% average error on success-
ful steps and the error on failed steps is also
slightly less.

Unfortunately, we had an error in our code
that caused all of the SVMs in our final test to
only use the original 15 features instead of the 35
features that include slope and distance between
feet. We did not notice this until it was too late to
retrain our final classifier for the competition
submission deadline. Thus our classifier for the
competition, where we placed 2nd out of around
fifteen teams, was sub par. After retraining the
classifier with all 35 features and using a smaller
C value of 32,768 to reduce training time, the new
classifier was 15% better than the classifier we

submitted for the competition. The majority of
this improvement was in the successful step clas-
sification, reducing the error to 41.7% on the test
set.

Our competition classifier had problems with
specific types of level three terrain because it did
not use slope as a feature. This lack of slope
causes problems when our high level search cre-
ates a path that passes through a valley with steep
slopes and a relatively small width. In one par-
ticular level three map (seed 17833), our competi-
tion classifier took two hours and forty-seven
minutes to find the goal while using our best SVM
the robot took exactly sixteen minutes to find the
goal. While this is definitely an extreme case, we
believe that our best classifier would drastically
outperform our competition classifier on most ter-
rains because our competition classifier threw
away too many successful steps.

3.6 Hardwired Classifier
After analyzing the behavior of our robot and the
decisions of our classifiers, we decided to hard-
wire several constraints pertaining to the robot's
physical limitations and the competition's rules.
First, our hardwired classifier rejects any step that
takes the dog out of the bounds of the terrain.
Also, to completely eliminate the possibility of the
dog dragging one of its feet, we also impose a re-
striction that if any of the feet are farther than 20
cm from the center of the dog's body then that foot
is the only foot that can move. To eliminate the
possibility of the dog reaching for a position that
is too far away or too close to the dog's center, we
also do not allow steps that bring the foot less than
six cm from the center of the body and more than
20 cm away from the body. We made these cal-
culations by converting the robot's state and action
to local coordinates. We set the center of the dog
3.5 cm in front of its true center in its length direc-
tion to encourage forward movement.

Our hardwired classifier coupled with our
high level search in Section 4 performed consid-
erably well. While collecting data for the final
dataset, the robot averaged 1:10:10, 0:19:33,
0:07:33 on level 3, 2, and 1 terrains respectively,
where the time format is HH:MM:SS. These av-
erages include 21 terrains for each level. The
level three terrains had a high variance, with a
maximum time of 3:43:35 and a minimum time of
0:08:43. From all of our tests, we found that the

actual difficulty of level three maps can very
greatly.

4 High Level Search
The most useful extension for our robot was the
high level search. We implemented our high level
search by dividing the terrain into two layers of
squares. The first layer of squares divides the ter-
rain into sections like a chessboard. For the sec-
ond layer, we place squares such that the center of
each square is the intersection of the corner of
four squares of the first layer. The objective of
our high level search is to find the best sequence
of squares to pass through to reach the goal, and
to intelligently place an intermediate goal in each
square along the path.

4.1 The Algorithm
After creating our two layers, we sample the
height of a certain number of points in each
square by calling the simulator's getPointHeight
function. From the samples, we calculate the av-
erage height and variance of each square. We
then perform a greedy A-Star search from the start
square to the goal square. While in any given
square, the successor squares are the immediate
squares within the same layer that can be reached
by moving up, down, left, or right and the imme-
diate squares in the opposite layer that can be
reached by moving in a diagonal direction.

The heuristic for our search is a weighted
summation of the difference between average
heights of the parent and child squares, the aver-
age height of the child square, and the straight-
line distance between the child square and the
goal. The weight for the difference between aver-
age heights and the weight for the average height
of the child can optionally be constant or vary ac-
cording to the variance of the child square. If the
weights are not constant, then the weights are cal-
culated using two parameters: MiddleNum and
MaxNum. The height difference weight is calcu-
lated by MiddleNum divided by the variance of
the child square while the height weight is calcu-
lated by MiddleNum times the variance of the
child square. Both weights are capped by a Max-
Num parameter and the variances used are multi-
plied by a scale parameter.

After completing the A-Star search, we evalu-
ate each square along the path to decide where to

place the square's goal. For each square, we sam-
ple 100 points within the square and calculate the
point's height and slope in both the x and y direc-
tions. For each sample we calculate a score which
is a summation of the absolute value of the differ-
ence between the sample's height and the square's
average height, 100 times the absolute value of
the x direction slope, and 100 times the absolute
value of the y direction slope. We place the goal
at the sample with the lowest computed score.
We chose each item in the summation through
many testing runs and evaluations using our visu-
alization tools in Section 4.2.

The high level search has 13 different parame-
ters. They are the length of each square in the x
and y directions, length of the entire search area in
the x and y directions, the translation of the search
area in the x and y directions, the number of sam-
ples per square, the scaling factor for the variance,
an addition factor for the variance, the Middle-
Num, MaxNum, and straight-line distance weight
for the heuristic, and a boolean for whether or not
to use static weights for the heuristic. If the
search is told to use static weights then Middle-
Num is the weight for the height difference and
MaxNum is the weight for the height of the child
square. Thus we can easily perform searches at
different resolutions and in specific areas of any
terrain.

After much testing as described in Section
4.2, our parameters in order are 0.26, 0.26, 3.0,
2.8, 0.25, 0.0, 6000, 1900, 0.0, 350, 500, 7, and
false. The size of the square is 26 cm by 26 cm
because the dog is roughly 26 cm long. We only
perform one high level search at the beginning of
a terrain. We did not have enough time to evalu-
ate using the high level search on specific areas of
the terrain at varying resolutions, but we suspect
that it would have improved performance.

4.2 Path Visualization / Parameter
Evaluation

In order to visualize the results of our high level
search implementation and parameter choices, we
modified SDLittleDog.cpp in the simulator folder
to output the entire path of goals that we generate.
We changed the size and shape of the goal to be a
thin cylinder that looks like a post coming out of
the ground. We also modified the goal display so
that we can view multiple paths at once. Yet an-

other visualization option that we implemented
was the ability to view every square's goal with
the height of the pole reflecting the average height
of the given square. The following figures show
the output of our visualization schemes:

Viewing just the goal path. The goals disappear as they are reached.

Viewing the same path with the other squares' posts not on the path.

The same visualization (different run on the terrain), but viewed from
above. You can see how the goal posts were positioned within their
squares. All non-goal posts are located at the center of their square.

Visualizing paths generated from different parameters. The green
path is the active path using our chosen parameters. The other paths
use constant weights for the heuristic. The red, blue, and pink paths
use 50, 350, and 350 for the height difference weight respectively
and 350, 350, 50 for the child height weight respectively. Thus the
red path likes to stay close to sea level, the pink path likes to mini-
mize the change in height between squares, and the blue path tries to
minimize both equally.

Same visualization with the terrain turned on. As you can see, each
path has different behavior. The blue path is similar to our variance
path in this case except that the variance path tends to be smoother.

Same visualization, different angle. The red, blue, and pink poles in
the distance (off the map) are markers for which color corresponds to
which high level search. The paths are plotted in the order that their
respective high level search is executed.

5 Turning Toward the Goal
In an attempt to make the dog walk more natu-
rally, we added a side search to the searching
process that makes the dog try to turn towards the
next goal once reaching a goal. The turning
search uses as a heuristic the angle between the
direction the dog is facing and the next goal. We
calculate the angle by approximating the dog's di-
rection based on its feet. We create a vector from
the points generated by the average of the front
feet and the average of the back feet. We create a
second vector using the center of the dog's feet
and the position of the next goal. The turn is com-
plete when the angle is roughly less than 10 de-
grees. To eliminate the problem of turning on dif-
ficult ground, the turning search quits if the search
makes 150 failed steps. From anecdotal evidence,
making the dog turn significantly improves
movement time on goals that are not initially in
front of the robot.

6 Statistics Analyzer
While performing any search, we built in the op-
tion to record information such as the time to
complete each turn, time to reach each goal, the
number of successful and failed steps during each
turn and while walking to each goal, the number
of nodes on the fringe at the end of the search, the
total number of nodes pulled off the fringe, the to-
tal number of classifier rejections, the total num-
ber of steps simulated, the total number of closed
set hits, and the total number of failed simulation
steps. We created the ZStat class to process the
data file containing this information for multiple
runs. ZStat parses the file and then computes av-
erages of all of the values. We used ZStat to re-
port most of the various numbers in this report.

7 Optimizations and Other De-
tails

We implemented several other important items
that helped our program in some way. This in-
cludes using hashes to identify duplicate states,
actions, and slopes and modifying QueueNode for
efficient memory management of paths

7.1 State, Action, and Slope Hashes
We create an ID, which we call a hash, for each
state, action, and slope, which we call a hash, by

converting the respective class to a string where
each double is reduced to three significant figures.
Thus the State class's hash is a string of 36 charac-
ters, where each set of 9 characters are the (x,y,z)
coordinates of a foot. We use State's hash as the
key to our closed set for eliminating repeated
states. The Action and Slopes classes have simi-
lar hashes, and we use hashes from all three
classes for eliminating duplicate examples in our
datasets.

7.2 Efficient Path Storage
In our original implementation of A-Star, each
QueueNode held a list of states leading up to the
current state. This method used an unreasonable
amount of memory because all of the same states
along different QueueNodes' paths were stored in
memory as separate objects. Thus we modified
our QueueNode class to hold a pointer to its par-
ent and we developed a system of use and delete
methods that eliminated memory leaks and possi-
ble segmentation faults by automatically remov-
ing QueueNodes from memory when there are no
more pointers pointing to the object. This change
allows us to store several hundred thousand
QueueNodes in the same space that we could store
say 60,000 previously.

8 Conclusion
As seen in the previous sections, we experimented
with many different methods for improving our
robot's performance. The most useful extension
by far was the high level search. We feel that the
least useful extension was the turning functional-
ity, but it still had a positive effect on the system.
Overall, Support Vector Machines with polyno-
mial kernels were the best step classifiers, but
they can take many hours longer to train. Addi-
tionally, our hardwired classifier coupled with the
high level search performed remarkably well.
Another essential part of our system was our visu-
alization and analysis tools. Without these tools
we would not have been able to evaluate our algo-
rithms and fine tune the parameters.

Given more time, we would have liked to try
several other extensions such as using the high
level search at different resolutions along the path
to find better routes, trying additional features
such as joint angles, predicting whether a state
will lead to many failures in the future, and pre-

dicting whether a turn will be useful given the ter-
rain underneath the dog and the terrain on the path
to the next goal. We believe that all of these ex-
tensions would have a positive impact on the sys-
tem performance.

9 References
[1] Robert Davies, Newmat C++ matrix library,

http://www.robertnz.net/nm_intro.htm.
[2] Chih-Chung Chang and Chih-Jen Lin, LIBSVM : a

library for support vector machines, 2001. Soft-
ware available at
http://www.csie.ntu.edu.tw/~cjlin/libsvm

Appendix

Table 1: Cross Validation for SVMs with Radial Basis Function Kernels
(using dataset that does not contain level three terrain) (only the original 15 features)

Classifier Name Foot Dataset
Negative

Error
Positive

Error
Overall
Error

Processing
Time

(milliseconds)
SVM_16384_rbf_3.05176e-05 fl train 100 0 50 8081
SVM_16384_rbf_6.10352e-05 fl train 65.6263 15.9042 40.7653 6944
SVM_16384_rbf_0.00012207 fl train 100 0 50 7172

SVM_16384_rbf_0.000244141 fl train 99.7862 0 49.8931 7170
SVM_16384_rbf_0.000488281 fl train 100 0 50 7215
SVM_16384_rbf_0.000976562 fl train 100 0 50 7730
SVM_16384_rbf_0.00195312 fl train 100 0 50 6912
SVM_16384_rbf_0.00390625 fl train 100 0 50 7316

SVM_16384_rbf_0.0078125 fl train 100 0 50 6397
SVM_16384_rbf_0.015625 fl train 100 0 50 4958
SVM_16384_rbf_0.03125 fl train 100 0 50 4222

SVM_16384_rbf_0.0625 fl train 100 0 50 3644
SVM_16384_rbf_0.125 fl train 91.6204 0.38478 46.0026 2698

SVM_16384_rbf_0.25 fl train 92.9029 0.38478 46.6439 2713
SVM_16384_rbf_0.5 fl train 93.6725 0.427533 47.05 2441

SVM_16384_rbf_1 fl train 94.6986 0.427533 47.5631 2024
SVM_16384_rbf_2 fl train 100 0 50 1927
SVM_16384_rbf_4 fl train 95.4681 0.427533 47.9478 1633

SVM_16384_rbf_3.05176e-05 fl cv 100 0 50 2658
SVM_16384_rbf_6.10352e-05 fl cv 66.7089 14.8101 40.7595 2329
SVM_16384_rbf_0.00012207 fl cv 100 0 50 2667

SVM_16384_rbf_0.000244141 fl cv 100 0 50 2559
SVM_16384_rbf_0.000488281 fl cv 100 0 50 2401
SVM_16384_rbf_0.000976562 fl cv 100 0 50 2594
SVM_16384_rbf_0.00195312 fl cv 100 0 50 2602
SVM_16384_rbf_0.00390625 fl cv 100 0 50 2097

SVM_16384_rbf_0.0078125 fl cv 100 0 50 2643
SVM_16384_rbf_0.015625 fl cv 100 0 50 1801
SVM_16384_rbf_0.03125 fl cv 100 0 50 1312

SVM_16384_rbf_0.0625 fl cv 100 0 50 1099
SVM_16384_rbf_0.125 fl cv 92.0253 0.379747 46.2025 883

SVM_16384_rbf_0.25 fl cv 93.2911 0.253165 46.7722 867
SVM_16384_rbf_0.5 fl cv 94.0506 0.379747 47.2152 809

SVM_16384_rbf_1 fl cv 94.557 0.379747 47.4684 665
SVM_16384_rbf_2 fl cv 100 0 50 617
SVM_16384_rbf_4 fl cv 94.6835 0.253165 47.4684 556

SVM_16384_rbf_3.05176e-05 fl test 100 0 50 2365
SVM_16384_rbf_6.10352e-05 fl test 66.8428 15.1915 41.0172 2217
SVM_16384_rbf_0.00012207 fl test 100 0 50 2554

SVM_16384_rbf_0.000244141 fl test 99.6037 0 49.8018 2438
SVM_16384_rbf_0.000488281 fl test 100 0 50 2606
SVM_16384_rbf_0.000976562 fl test 100 0 50 2455
SVM_16384_rbf_0.00195312 fl test 100 0 50 2550
SVM_16384_rbf_0.00390625 fl test 100 0 50 2128

SVM_16384_rbf_0.0078125 fl test 100 0 50 1882
SVM_16384_rbf_0.015625 fl test 100 0 50 1609
SVM_16384_rbf_0.03125 fl test 100 0 50 1284

SVM_16384_rbf_0.0625 fl test 100 0 50 1058
SVM_16384_rbf_0.125 fl test 90.753 0.1321 45.4425 948

SVM_16384_rbf_0.25 fl test 92.074 0.1321 46.103 958
SVM_16384_rbf_0.5 fl test 92.7345 0.1321 46.4333 764

SVM_16384_rbf_1 fl test 94.1876 0.1321 47.1598 674
SVM_16384_rbf_2 fl test 100 0 50 595
SVM_16384_rbf_4 fl test 94.9802 0.1321 47.5561 554

The classifier names indicate the C and gamma values through the format

"SVM_C_rbf_gamma"

Table 2: Cross Validation for SVMs with Polynomial Kernels
(using the final dataset) (only the original 15 features)

(Classifier name format: SVM_C_polynomial_degree_1_0)

Classifier Name Foot Dataset
Negative

Error
Positive

Error
Overall
Error

Processing
Time

(milliseconds)
SVM_0.03125_polynomial_2_1_0 fl train 0 100 8.13 29966

SVM_0.0625_polynomial_2_1_0 fl train 0 100 8.13 30052
SVM_0.125_polynomial_2_1_0 fl train 0 100 8.13 30154
SVM_0.25_polynomial_2_1_0 fl train 0 100 8.13 30668

SVM_0.5_polynomial_2_1_0 fl train 0 100 8.13 32244
SVM_1_polynomial_2_1_0 fl train 0 100 8.13 31278
SVM_2_polynomial_2_1_0 fl train 0 100 8.13 32497
SVM_4_polynomial_2_1_0 fl train 0 100 8.13 31215
SVM_8_polynomial_2_1_0 fl train 0 100 8.13 32098

SVM_16_polynomial_2_1_0 fl train 0 100 8.13 30790
SVM_32_polynomial_2_1_0 fl train 0 100 8.13 30866
SVM_64_polynomial_2_1_0 fl train 0 100 8.13 30471

SVM_128_polynomial_2_1_0 fl train 0 100 8.13 30354
SVM_256_polynomial_2_1_0 fl train 0 100 8.13 30286
SVM_512_polynomial_2_1_0 fl train 97.04 0 89.16 30375

SVM_1024_polynomial_2_1_0 fl train 0.44 82.2 7.08 31127
SVM_2048_polynomial_2_1_0 fl train 0.74 74.68 6.75 30251
SVM_4096_polynomial_2_1_0 fl train 0.88 71.43 6.62 30682
SVM_8192_polynomial_2_1_0 fl train 100 0 91.87 29730

SVM_16384_polynomial_2_1_0 fl train 100 0 91.87 30395
SVM_32768_polynomial_2_1_0 fl train 100 0 91.87 29640

SVM_0.03125_polynomial_3_1_0 fl train 0 100 8.13 30468
SVM_0.0625_polynomial_3_1_0 fl train 0 100 8.13 31154

SVM_0.125_polynomial_3_1_0 fl train 0 100 8.13 32047
SVM_0.25_polynomial_3_1_0 fl train 0 100 8.13 31544

SVM_0.5_polynomial_3_1_0 fl train 0 100 8.13 30944
SVM_1_polynomial_3_1_0 fl train 0 100 8.13 30869
SVM_2_polynomial_3_1_0 fl train 0 100 8.13 30879
SVM_4_polynomial_3_1_0 fl train 0 100 8.13 31311
SVM_8_polynomial_3_1_0 fl train 0 100 8.13 30991

SVM_16_polynomial_3_1_0 fl train 0 100 8.13 31991
SVM_32_polynomial_3_1_0 fl train 0 100 8.13 31001
SVM_64_polynomial_3_1_0 fl train 0 100 8.13 31571

SVM_128_polynomial_3_1_0 fl train 0 100 8.13 31880
SVM_256_polynomial_3_1_0 fl train 0.01 99.19 8.07 31820
SVM_512_polynomial_3_1_0 fl train 0.33 84.89 7.2 30817

SVM_1024_polynomial_3_1_0 fl train 0.62 73.53 6.54 30503
SVM_2048_polynomial_3_1_0 fl train 96.54 0 88.7 30287
SVM_4096_polynomial_3_1_0 fl train 1.1 59.42 5.84 29604
SVM_8192_polynomial_3_1_0 fl train 1.11 56.36 5.6 29854

SVM_16384_polynomial_3_1_0 fl train 1.17 53.59 5.43 27687
SVM_32768_polynomial_3_1_0 fl train 99.99 0 91.87 27034

SVM_0.03125_polynomial_4_1_0 fl train 0 100 8.13 30907
SVM_0.0625_polynomial_4_1_0 fl train 0 100 8.13 31102

SVM_0.125_polynomial_4_1_0 fl train 0 100 8.13 31427
SVM_0.25_polynomial_4_1_0 fl train 0 100 8.13 32498

SVM_0.5_polynomial_4_1_0 fl train 0 100 8.13 30940
SVM_1_polynomial_4_1_0 fl train 0 100 8.13 31154
SVM_2_polynomial_4_1_0 fl train 0 100 8.13 31246
SVM_4_polynomial_4_1_0 fl train 0 100 8.13 32626
SVM_8_polynomial_4_1_0 fl train 0 100 8.13 31771

SVM_16_polynomial_4_1_0 fl train 0 100 8.13 33334
SVM_32_polynomial_4_1_0 fl train 0 100 8.13 31518
SVM_64_polynomial_4_1_0 fl train 0 100 8.13 32807

SVM_128_polynomial_4_1_0 fl train 0 100 8.13 31382
SVM_256_polynomial_4_1_0 fl train 0.03 97.31 7.93 31480
SVM_512_polynomial_4_1_0 fl train 12.92 42.31 15.3 32266

SVM_1024_polynomial_4_1_0 fl train 1.44 65.06 6.61 32974
SVM_2048_polynomial_4_1_0 fl train 0.53 75.75 6.65 32152
SVM_4096_polynomial_4_1_0 fl train 0.82 66.64 6.17 30372
SVM_8192_polynomial_4_1_0 fl train 97.85 0.07 89.9 29470

SVM_16384_polynomial_4_1_0 fl train 1 56.21 5.49 28498

Classifier Name Foot Dataset
Negative

Error
Positive

Error
Overall
Error

Processing
Time

(milliseconds)
SVM_32768_polynomial_4_1_0 fl train 94.74 0.04 87.04 27687
SVM_49152_polynomial_3_1_0 fl train 1.31 48.95 5.18 26802
SVM_65536_polynomial_3_1_0 fl train 1.32 48.06 5.12 26763
SVM_81920_polynomial_3_1_0 fl train 1.31 46.92 5.02 27657
SVM_98304_polynomial_3_1_0 fl train 1.33 46.48 5 26725

SVM_131072_polynomial_3_1_0 fl train 100 0 91.87 25881
SVM_49152_polynomial_4_1_0 fl train 1.09 50.65 5.11 30576
SVM_65536_polynomial_4_1_0 fl train 99.33 0 91.26 27145
SVM_81920_polynomial_4_1_0 fl train 1.11 47.25 4.86 26849
SVM_98304_polynomial_4_1_0 fl train 99.99 0 91.87 27859

SVM_131072_polynomial_4_1_0 fl train 1.09 45.48 4.7 28000
SVM_0.03125_polynomial_2_1_0 fl cv 0 100 7.69 9911

SVM_0.0625_polynomial_2_1_0 fl cv 0 100 7.69 9924
SVM_0.125_polynomial_2_1_0 fl cv 0 100 7.69 10014
SVM_0.25_polynomial_2_1_0 fl cv 0 100 7.69 10152

SVM_0.5_polynomial_2_1_0 fl cv 0 100 7.69 10674
SVM_1_polynomial_2_1_0 fl cv 0 100 7.69 10438
SVM_2_polynomial_2_1_0 fl cv 0 100 7.69 10700
SVM_4_polynomial_2_1_0 fl cv 0 100 7.69 10276
SVM_8_polynomial_2_1_0 fl cv 0 100 7.69 10592

SVM_16_polynomial_2_1_0 fl cv 0 100 7.69 10237
SVM_32_polynomial_2_1_0 fl cv 0 100 7.69 10180
SVM_64_polynomial_2_1_0 fl cv 0 100 7.69 10064

SVM_128_polynomial_2_1_0 fl cv 0 100 7.69 10011
SVM_256_polynomial_2_1_0 fl cv 0 100 7.69 10047
SVM_512_polynomial_2_1_0 fl cv 96.74 0 89.31 10052

SVM_1024_polynomial_2_1_0 fl cv 0.62 81.98 6.87 10274
SVM_2048_polynomial_2_1_0 fl cv 0.9 75.85 6.66 9898
SVM_4096_polynomial_2_1_0 fl cv 0.96 72.32 6.45 10173
SVM_8192_polynomial_2_1_0 fl cv 100 0 92.31 9801

SVM_16384_polynomial_2_1_0 fl cv 100 0 92.31 10085
SVM_32768_polynomial_2_1_0 fl cv 100 0 92.31 9730

SVM_0.03125_polynomial_3_1_0 fl cv 0 100 7.69 10239
SVM_0.0625_polynomial_3_1_0 fl cv 0 100 7.69 10356

SVM_0.125_polynomial_3_1_0 fl cv 0 100 7.69 10511
SVM_0.25_polynomial_3_1_0 fl cv 0 100 7.69 10108

SVM_0.5_polynomial_3_1_0 fl cv 0 100 7.69 10168
SVM_1_polynomial_3_1_0 fl cv 0 100 7.69 10279
SVM_2_polynomial_3_1_0 fl cv 0 100 7.69 10194
SVM_4_polynomial_3_1_0 fl cv 0 100 7.69 10322
SVM_8_polynomial_3_1_0 fl cv 0 100 7.69 10247

SVM_16_polynomial_3_1_0 fl cv 0 100 7.69 10647
SVM_32_polynomial_3_1_0 fl cv 0 100 7.69 10240
SVM_64_polynomial_3_1_0 fl cv 0 100 7.69 10488

SVM_128_polynomial_3_1_0 fl cv 0 100 7.69 10312
SVM_256_polynomial_3_1_0 fl cv 0.01 98.59 7.59 10435
SVM_512_polynomial_3_1_0 fl cv 0.46 84.81 6.94 10209

SVM_1024_polynomial_3_1_0 fl cv 0.85 74.2 6.49 10108
SVM_2048_polynomial_3_1_0 fl cv 96.28 0 88.88 10044
SVM_4096_polynomial_3_1_0 fl cv 1.34 61.84 5.99 9741
SVM_8192_polynomial_3_1_0 fl cv 1.39 58.66 5.79 9753

SVM_16384_polynomial_3_1_0 fl cv 1.59 54.89 5.68 9204
SVM_32768_polynomial_3_1_0 fl cv 99.99 0 92.31 8977

SVM_0.03125_polynomial_4_1_0 fl cv 0 100 7.69 10238
SVM_0.0625_polynomial_4_1_0 fl cv 0 100 7.69 10233

SVM_0.125_polynomial_4_1_0 fl cv 0 100 7.69 10450
SVM_0.25_polynomial_4_1_0 fl cv 0 100 7.69 10667

SVM_0.5_polynomial_4_1_0 fl cv 0 100 7.69 10278
SVM_1_polynomial_4_1_0 fl cv 0 100 7.69 10315
SVM_2_polynomial_4_1_0 fl cv 0 100 7.69 10381
SVM_4_polynomial_4_1_0 fl cv 0 100 7.69 10807
SVM_8_polynomial_4_1_0 fl cv 0 100 7.69 4.29E+09

SVM_16_polynomial_4_1_0 fl cv 0 100 7.69 11086
SVM_32_polynomial_4_1_0 fl cv 0 100 7.69 10411
SVM_64_polynomial_4_1_0 fl cv 0 100 7.69 10872

SVM_128_polynomial_4_1_0 fl cv 0 100 7.69 10419

Classifier Name Foot Dataset
Negative

Error
Positive

Error
Overall
Error

Processing
Time

(milliseconds)
SVM_256_polynomial_4_1_0 fl cv 0.03 97.06 7.49 10491
SVM_512_polynomial_4_1_0 fl cv 12.89 42.76 15.19 10468

SVM_1024_polynomial_4_1_0 fl cv 1.6 65.96 6.54 10770
SVM_2048_polynomial_4_1_0 fl cv 0.78 74.32 6.44 10616
SVM_4096_polynomial_4_1_0 fl cv 1.04 67.26 6.13 10046
SVM_8192_polynomial_4_1_0 fl cv 97.93 0 90.4 9686

SVM_16384_polynomial_4_1_0 fl cv 1.26 59.84 5.76 9462
SVM_32768_polynomial_4_1_0 fl cv 94.83 0.12 87.55 9190
SVM_49152_polynomial_3_1_0 fl cv 1.78 52.06 5.65 8926
SVM_65536_polynomial_3_1_0 fl cv 1.81 51 5.59 8825
SVM_81920_polynomial_3_1_0 fl cv 1.8 50.06 5.51 9165
SVM_98304_polynomial_3_1_0 fl cv 1.83 49.59 5.5 8706

SVM_131072_polynomial_3_1_0 fl cv 100 0 92.31 8582
SVM_49152_polynomial_4_1_0 fl cv 1.62 53.24 5.59 9228
SVM_65536_polynomial_4_1_0 fl cv 99.48 0 91.83 8989
SVM_81920_polynomial_4_1_0 fl cv 1.69 52.3 5.58 8950
SVM_98304_polynomial_4_1_0 fl cv 100 0 92.31 9071

SVM_131072_polynomial_4_1_0 fl cv 1.7 50.29 5.43 9307
SVM_0.03125_polynomial_2_1_0 fl test 0 100 8.22 10107

SVM_0.0625_polynomial_2_1_0 fl test 0 100 8.22 10081
SVM_0.125_polynomial_2_1_0 fl test 0 100 8.22 10186
SVM_0.25_polynomial_2_1_0 fl test 0 100 8.22 10319

SVM_0.5_polynomial_2_1_0 fl test 0 100 8.22 10811
SVM_1_polynomial_2_1_0 fl test 0 100 8.22 10730
SVM_2_polynomial_2_1_0 fl test 0 100 8.22 10910
SVM_4_polynomial_2_1_0 fl test 0 100 8.22 10570
SVM_8_polynomial_2_1_0 fl test 0 100 8.22 10845

SVM_16_polynomial_2_1_0 fl test 0 100 8.22 10393
SVM_32_polynomial_2_1_0 fl test 0 100 8.22 10322
SVM_64_polynomial_2_1_0 fl test 0 100 8.22 10232

SVM_128_polynomial_2_1_0 fl test 0 100 8.22 10223
SVM_256_polynomial_2_1_0 fl test 0 100 8.22 10220
SVM_512_polynomial_2_1_0 fl test 97.12 0 89.14 10247

SVM_1024_polynomial_2_1_0 fl test 0.46 81.95 7.16 10527
SVM_2048_polynomial_2_1_0 fl test 0.78 73.62 6.77 10057
SVM_4096_polynomial_2_1_0 fl test 0.87 70.05 6.56 10428
SVM_8192_polynomial_2_1_0 fl test 100 0 91.78 10004

SVM_16384_polynomial_2_1_0 fl test 100 0 91.78 10388
SVM_32768_polynomial_2_1_0 fl test 100 0 91.78 9961

SVM_0.03125_polynomial_3_1_0 fl test 0 100 8.22 11932
SVM_0.0625_polynomial_3_1_0 fl test 0 100 8.22 10526

SVM_0.125_polynomial_3_1_0 fl test 0 100 8.22 11256
SVM_0.25_polynomial_3_1_0 fl test 0 100 8.22 10222

SVM_0.5_polynomial_3_1_0 fl test 0 100 8.22 10428
SVM_1_polynomial_3_1_0 fl test 0 100 8.22 10425
SVM_2_polynomial_3_1_0 fl test 0 100 8.22 10452
SVM_4_polynomial_3_1_0 fl test 0 100 8.22 10571
SVM_8_polynomial_3_1_0 fl test 0 100 8.22 10412

SVM_16_polynomial_3_1_0 fl test 0 100 8.22 10854
SVM_32_polynomial_3_1_0 fl test 0 100 8.22 10388
SVM_64_polynomial_3_1_0 fl test 0 100 8.22 10661

SVM_128_polynomial_3_1_0 fl test 0 100 8.22 10521
SVM_256_polynomial_3_1_0 fl test 0 99.24 8.16 10624
SVM_512_polynomial_3_1_0 fl test 0.34 83.14 7.15 10365

SVM_1024_polynomial_3_1_0 fl test 0.64 73.95 6.67 10250
SVM_2048_polynomial_3_1_0 fl test 96.77 0 88.82 10232
SVM_4096_polynomial_3_1_0 fl test 1.2 60.22 6.05 9961
SVM_8192_polynomial_3_1_0 fl test 1.29 57.41 5.9 9878

SVM_16384_polynomial_3_1_0 fl test 1.32 54.92 5.72 9438
SVM_32768_polynomial_3_1_0 fl test 100 0 91.78 9162

SVM_0.03125_polynomial_4_1_0 fl test 0 100 8.22 10478
SVM_0.0625_polynomial_4_1_0 fl test 0 100 8.22 10936

SVM_0.125_polynomial_4_1_0 fl test 0 100 8.22 10652
SVM_0.25_polynomial_4_1_0 fl test 0 100 8.22 10906

SVM_0.5_polynomial_4_1_0 fl test 0 100 8.22 10477
SVM_1_polynomial_4_1_0 fl test 0 100 8.22 10454

Classifier Name Foot Dataset
Negative

Error
Positive

Error
Overall
Error

Processing
Time

(milliseconds)
SVM_2_polynomial_4_1_0 fl test 0 100 8.22 10530
SVM_4_polynomial_4_1_0 fl test 0 100 8.22 10949
SVM_8_polynomial_4_1_0 fl test 0 100 8.22 10914

SVM_16_polynomial_4_1_0 fl test 0 100 8.22 11613
SVM_32_polynomial_4_1_0 fl test 0 100 8.22 10620
SVM_64_polynomial_4_1_0 fl test 0 100 8.22 11064

SVM_128_polynomial_4_1_0 fl test 0 100 8.22 13542
SVM_256_polynomial_4_1_0 fl test 0.07 97.41 8.07 10654
SVM_512_polynomial_4_1_0 fl test 12.96 39.57 15.15 10766

SVM_1024_polynomial_4_1_0 fl test 1.42 63.89 6.56 10949
SVM_2048_polynomial_4_1_0 fl test 0.6 74.27 6.66 10907
SVM_4096_polynomial_4_1_0 fl test 0.89 66.92 6.32 10200
SVM_8192_polynomial_4_1_0 fl test 97.81 0.11 89.78 9891

SVM_16384_polynomial_4_1_0 fl test 1.13 56.86 5.72 9569
SVM_32768_polynomial_4_1_0 fl test 94.72 0 86.93 9496
SVM_49152_polynomial_3_1_0 fl test 1.37 50.05 5.37 9152
SVM_65536_polynomial_3_1_0 fl test 1.42 48.97 5.33 9363
SVM_81920_polynomial_3_1_0 fl test 1.47 48.65 5.35 9367
SVM_98304_polynomial_3_1_0 fl test 1.48 48.32 5.33 8786

SVM_131072_polynomial_3_1_0 fl test 100 0 91.78 8746
SVM_49152_polynomial_4_1_0 fl test 1.27 51.68 5.41 9275
SVM_65536_polynomial_4_1_0 fl test 99.3 0 91.14 9111
SVM_81920_polynomial_4_1_0 fl test 1.38 50.16 5.4 9140
SVM_98304_polynomial_4_1_0 fl test 100 0 91.78 9211

SVM_131072_polynomial_4_1_0 fl test 1.42 48.86 5.32 9777

