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1 Introduction 
The task of making a robot dog walk across hilly 
terrain towards a goal is surprisingly difficult.  A 
simple A-Star search is doomed to fail from the 
beginning simply because of the astronomically 
large number of steps that the dog can take while 
at each location on the terrain.  In our effort to 
create a dog that can successfully navigate a level 
three terrain we: 
 abstracted the problem to a generic setting 
 created several classifiers using a multitude 

of features to predict when steps will fail in 
the simulator, 

 created an automatic system for collected 
data for the classifiers and for algorithm 
analysis, 

 developed a high level search to find an ade-
quate path along the terrain, 

 made the dog try to turn towards goals in-
stead of sidestepping or walking backwards, 

 and created many visualization and analysis 
tools to help us analyze our algorithms. 

The result of our effort is a capable dog that can 
efficiently navigate most difficult terrains. 

2 Problem Abstraction 
We began by abstracting the problem into conven-
ient classes that allow us to operate without deal-
ing with specific data structures from the simula-
tor such as bduVec3f.  We constructed many 
classes such as Point, State, Action, QueueNode, 
SuccessorGenerator, and Agent that allow us to 
easily manage the search process in a more ge-
neric way than using the simulator's data struc-
tures and methods. 

The Point class holds a point in n-dimensional 
space, where n is any integer greater than or equal 
to one.  The state of the robot at a given location 
on the map is encompassed in the State class, 
which holds one three-dimensional Point object 
for each of the four feet.  The Action class man-

ages the information pertaining to moving a single 
foot to a location on the terrain.  The Action class 
contains an integer value signifying which foot 
the action corresponds to and a three-dimensional 
point holding the location on the terrain where the 
foot will move.  SuccessorGenerator accepts a 
State object as input and produces successor states 
by applying actions to the input.  QueueNode con-
tains an Action object and a State object and 
stores the path cost, heuristic cost, and other path 
information such as the sequence of steps that lead 
to the QueueNode's state.  Finally, the Agent class 
uses all of the other classes to perform an A-Star 
search that finds a sequence of steps that success-
fully take the dog from the start to the goal. 

2.1 Successor Generator 
One of the immediate challenges in searching for 
a sequence of steps is the size of the search space.  
The SuccesorGenerator class is capable of produc-
ing successors in multiple ways, some of which 
alleviate many memory problems that arise from 
holding many states in memory.  We produce new 
states by creating a grid centered on each foot and 
returning a new state for each square in the four 
grids (except the four center squares where the 
parent's feet are located).  We can easily change 
the distance between squares in the grid and size 
of the grid by calling the SuccessorGenerator's 
initialization function.  Through trail and error, we 
found that a five-by-five grid with five cm be-
tween each square center works best.  For maxi-
mizing the score in the competition, we reduce the 
step size to one cm when the robot is close to the 
goal. 

Through the initialization function we can 
also change the order that the successors are pro-
duced.  The class can produce all of the successors 
at once (Type A), produce successors in sets with 
the outer ring of the grid produced first and the 
innermost ring produced lasted (Type B), and pro-
duce sets as in the previous method except within 
a single ring only producing every other successor 



the first time and then produce the other half of 
successors in the ring the second time (Type C).  
For Type B and Type C, after producing one 
round of successors we add the parent back to the 
fringe.  Figure 2.1 shows the successor generation 
order for a single foot using the various methods. 

 

 
Figure 2.1: The successor generation types. 

 
Producing the outer ring first essentially 

makes the dog only consider large steps.  If all of 
the large steps and their children fail or are worse 
than the parent, then the dog will return to the par-
ent state and the successor generator will produce 
smaller steps.  This drastically reduces the amount 
of QueueNodes in the fringe, which solves a 
memory problem that our first implementation 
experienced.  As discussed in Section 7, after cre-
ating the milestone we were able to optimize our 
memory management pertaining to QueueNodes 
and we no longer needed the tricks from the Suc-
cessorGenerator to save memory.  The foot order 
of the successors is also dependent on the parent's 
action's foot value.  We rotate the order of foot 
generation each time so that if the previous step 
was with the front-left foot then the front-right 
foot's successors will be generated first, if the pre-
vious step was with the front-right foot then the 
back-left foot's successors will be generated first, 
etc. 

3 Step Classifier 
Due to the computational intensity of simulating a 
step, we use a classifier to predict the success or 
failure of a given state/action pair in the simulator.  
We created a base class called LogClassifier from 
which all classifiers inherit, including none logis-
tic classifiers for legacy reasons.  The base class 
contains methods for loading a classifier's parame-
ters, writing a feature vector given a state/action 
pair, making a prediction given a feature vector, 
training all four feet given a training set of 
state/action pairs, and saving a classifier's parame-
ters to a file.  By requiring that all classifiers in-
herit from LogClassifier and that all classifiers 
override several required functions, we can test 
classifiers in the Agent class in a simple plug-and-
play manner. 
 The basic features of all step classifiers 
are the (x,y,z) values of each foot and the (x,y,z) 
value of the action.  As the project's development 
progressed, we added additional features that most 
classifiers have the ability to use.  These addi-
tional features are described in Section 3.4. 

3.1 Logistic Classifier 
We created a logistic classifier by inheriting from 
LogClassifier and overriding a few functions.  
Namely, we override the function that writes fea-
tures given a state/action pair, the function that re-
turns the name of the classifier, and the function 
that returns the number of features that the classi-
fier uses.  We used the Newmat C++ matrix li-
brary to calculate the Hessian during training [1]. 

The logistic classifier, called doesItAll_LC, 
allows for a variable number of features by ac-
cepting a vector of bitsets that signify which fea-
tures to use.  Each bitset in the vector signifies a 
power to add to the classifier's features while each 
bit in a bitset tells the classifier whether to use a 
specific feature.  As an example, to define a clas-
sifier that includes all of the base features and the 
square of all of the base features, we can pass a 
vector to doesItAll_LC that contains two bitsets 
with all bits set to one.  If we want to also include 
the third power of all the base features, we can 
place another bitset on the end of the vector.  Ad-
ditionally, if we want to exclude a certain feature, 
such as the third power of the x value of the ac-
tion, then in the third bitset in our vector, we can 
set the bit corresponding to the x value of the ac-



tion to zero.  doesItAll_LC also contains extra 
functions that allow us to write static classifiers to 
files based on a given vector of bitsets.  These 
static classifiers, such as doesItAll_All3_LC, do 
not have to process a vector of bitsets when writ-
ing each feature vector and, from our tests of writ-
ing 100,000 feature vectors, can write the feature 
vectors 1.23 times faster than doesItAll_LC. 

3.2 Data Collection 
We collect data by writing successful steps and 
failed steps to separate files.  Each line of these 
files contains the (x,y,z) values of all four feet, the 
foot of the action, the (x,y,z) values of the action, 
two slopes of the terrain at each foot (one in the x 
direction, one in the y direction), a marker for 
which map run the line corresponds to, the ID of 
the parent QueueNode, and the ID of the current 
QueueNode.  We include the two slopes for us as 
better features as described in Section 3.4.  We 
planned to use the map marker and QueueNode 
IDs to create a classifier that would try to predict 
when a step leads to many steps in the future that 
fail, but we ran out of time and did not create this 
classifier.  We collect data through a feedback 
loop, and we parse the data using the GoodBad-
Parser class. 

Our final dataset consists of 206,408 unique 
failed steps and 50,195 unique successful steps 
gathered from searches on random terrains with 
roughly an equal number of all terrain difficulty 
levels.  We used the feedback loop in the next sec-
tion to automatically generate the dataset from 
three machines.  We also generated all of the data 
using our high level search in Section 4 and our 
hardwired classifier in Section 3.6. 

3.2.1 Feedback Loop 
We use a feedback loop to automatically gather 
data from multiple terrains.  The loop continually 
creates a random terrain of a given level and exe-
cutes a search for the goal on the terrain.  We can 
specify the level from the command line.  We can 
also choose to cycle the level between 0, 1, 2 and 
3 every n iterations, or have the loop cycle the 
level after every search.  Additionally, the loop 
can use a step classifier and retrain the step classi-
fier using all of the data gathered every x itera-
tions. 

3.2.2 GoodBadParser 
The GoodBadParser class reads datasets into the 
structures gbpData and gbpSet.  It includes func-
tions to prune duplicate entries based on the hash 
of the state, action, and slopes (hashes described 
in Section 7), separate datasets into datasets based 
on feet, separate datasets into train, cross valida-
tion, and testing sets, and equalize datasets so that 
the number of good and bad entries are equal.  We 
equalize datasets by randomly duplicating entries 
in the smaller set. 

3.3 Cross Validation 
We created the CrossValidation class to test the 
effectiveness of our step classifiers.  The class ac-
cepts a vector of classifiers and a path to the train-
ing, cross validation, and testing sets and writes 
the classification results to a file of comma sepa-
rated values that can we view in Excel or OpenOf-
fice.org's Spreadsheet.  For each classifier and 
dataset pair, the class computes the average error 
on failed steps, average error on successful steps, 
average error on all steps, and the processing time 
in milliseconds to classify all examples in the 
dataset.  The class also reports the best classifier 
based on the average error from the cross valida-
tion set. 

3.4 Better Features 
Using the cross validation class on our final data-
set, our best logistic classifier uses the (x,y,z) of 
all four feet , the (x,y,z) of the action, and the 
squares and cubes of these values.  Our best logis-
tic classifier has 1.46% average error on failed 
steps, 71.24% average error on successful steps, 
and 7.2% average error on all steps.  The high bias 
towards correctly classifying failed steps is due to 
the four to one ratio of failed to successful steps in 
our dataset. 

Using the classifier resulted in total failure on 
most maps because the classifier threw away all of 
the potentially successful steps and the dog was 
left with only a few options that generally led to 
dead ends.  We tried biasing the classifier towards 
predicting steps to be successful by moving the 
decision boundary from zero into the negative 
numbers.  While this reduced the number of suc-
cessful steps that the classifier threw away, it in-
correctly classified too many failed steps to be 
useful.  We also tried training on an equalized set, 



which had similar results to moving the decision 
boundary. 

In previous tests with datasets consisting of 
only flat terrain, the logistic classifier was suffi-
cient for walking to a goal.  As seen from our re-
sults with datasets containing searches through all 
levels of terrain, our basic feature set is insuffi-
cient for correctly predicting if a state/action pair 
will result in a successful step in simulation.  To 
improve our performance, we incorporated addi-
tional features into our classifier. 

Aside from the features we previously de-
scribed, we also included the two slopes of the ter-
rain at each foot, the distance between each slope 
(treating the two slopes of each foot as single 2-
dimensional points), and the distance between 
each foot.  After adding these additional features, 
we have thirty-five base features instead of the 
original fifteen.  Adding addition powers of each 
feature increases the feature count of a classifier 
even more.  To decide which features improve 
classification performance, we created the Fea-
turePicker class that greedily finds the best feature 
set. 

3.4.1 The Logistic Feature Picker 
The FeaturePicker class takes a path to a dataset 
collection as input and uses doesItAll_LC to 
greedily find a good set of features for a given 
foot by minimizing the cross validation set's aver-
age error.  We allow the class to choose single 
powers, squares, and cubes of each base feature.  
We start the process by creating a vector that con-
tains three randomly initialized bitsets of size 
thirty-five.  At each iteration, we train the classi-
fier with the new feature set and the training set in 
the dataset collection.  We then compute the error 
using the cross validation set and keep the feature 
set if the average error is less than the previous 
best average error. 

After either keeping the current feature set or 
reverting to the previous best, we pick a random 
number of bits to flip in each bitset.  At the begin-
ning of the process, the max number of bits we al-
low to flip per bitset is two-thirds of the size of 
the bitset.  After every 5 iterations, we decrease 
the max number of bits we can flip by one until 
the max number is equal to one. 

3.4.2 Results 
After running FeaturePicker multiple times 

for the front-left foot, the best feature set had 
1.8% average error on failed steps, 60.4% average 
error on successful steps, and 6.6% average error 
on all steps.  Figure 3.4.2 shows the 73 features 
and corresponding vector of bitsets chosen by the 
FeaturePicker class for the front-left foot.  With-
out selectively picking features and instead using 
all of the base features plus their squares and 
cubes, the classifier had 1.5% average error on 
failed steps, 61.4% average error on successful 
steps, and 6.4% average error on all steps.  While 
the non-selective classifier had lower overall er-
ror, the FeaturePicker-based classifier had a lower 
average error on successful steps. 

 
 

One benefit of the FeaturePicker-based classi-
fier is that it has comparable average error yet it 
uses fewer features.  In our case, our best feature 
set contains 73 features while using the non-
selective classifier uses 106 features.  By writing 
and classifying 100,000 feature vectors and re-
cording the execution time, we found that the Fea-



turePicker-based classifier is 1.32 times faster 
than the non-selective classifier.  Of course, the 
longer classifier only took 11.990 seconds, so 
both classifiers are sufficiently fast. 

3.5 Better Classifiers 
While the additional features certainly improved 
our classification prospects, a better classification 
method could also help.  We implemented a Naïve 
Bayes classifier by inheriting from LogClassifier 
in a similar way to our logistic classifier classes.  
We also used Support Vector Machines by creat-
ing a wrapper around the LIBSVM library [2]. 

3.5.1 Naïve Bayes 
We tried Naïve Bayes because it is relatively sim-
ple to implement and the training and prediction 
time is significantly less than logistic regression 
or Support Vector Machines.  The two best Naïve 
Bayes classifiers used all 35 features.  The first 
classifier also used all squares and cubes, while 
the second classifier used squares, cubes, and 
fourth powers.  We did not apply FeaturePicker to 
Naïve Bayes and instead always used all 35 fea-
tures at each power level. 

Through training and evaluating on our final 
dataset, the first classifier had 2.98% average er-
ror on failed steps, 75.62% average error on suc-
cessful steps, and 8.56% average error on all steps 
while the second classifier had 28.84% average 
error on failed steps, 28.74% average error on suc-
cessful steps, and 28.83% average error on all 
steps.  The first classifier wrote and classified all 
of the feature vectors in the cross validation set in 
609 milliseconds while the second classifier took 
790 milliseconds.  While the Naïve Bayes classi-
fiers were fast, the first classifier was not as good 
as our best logistic classifier.  Even though the 
second classifier had significantly less error on 
successful steps in comparison with our best lo-
gistic classifier, the failed step error was too high.  
A very low failed step error is required because 
there are substantially more failed steps in the 
search space than successful steps.  For example, 
misclassifying 28% of the failed steps in our final 
dataset corresponds to misclassifying 57,794 steps 
while misclassifying 28% of the successful steps 
corresponds to misclassifying 14,054 steps.  From 
our observations, our dataset's four to one ration 
between failed and successful steps is similar or 
worse in all difficult terrains. 

3.5.2 Support Vector Machines 
The LIBSVM package supports using SVMs with 
various kernels.  We tested SVMs using all 35 
features and using LIBSVM's built-in polynomial, 
and radial basis function kernels.  We ran tests on 
the polynomial kernel to find the best polynomial 
degree and C value.  We also ran tests on the ra-
dial basis function kernel to find its best gamma 
and C value.  As suggested by LIBSVM's guide, 
we found the best parameter values by using cross 
validation on exponentially increasing values of 
C.  Thus for the polynomial kernel, we trained an 
SVM for degrees 2, 3, and 4 with C values of 2-5, 
2-4, 2-3, .., 214, 215.  We tested the radial basis func-
tion kernels in a similar manner, except we also 
used the exponentially increasing values for 
gamma in the range 2-15 to 23. 

Despite LIBSVM's guide suggesting that the 
radial basis function kernel usually works best, we 
found that the radial basis function kernel per-
formed horribly for all parameter values.  Table 1 
in the Appendix shows the results of testing radial 
basis function kernels and polynomial kernels on 
a dataset for the front-left foot that did not contain 
level three searches.  After our preliminary test-
ing, we tested the polynomial kernel with different 
parameter values on the final dataset for the front-
left foot.  The results for this test are in Table 2 in 
the Appendix. 

The SVM that we chose to use in our compe-
tition submission had a polynomial degree of 
three and a C value of 98,304.  This classifier had 
average test error of 1.48% on failed steps, 
48.32% on successful steps, and 5.33% on all 
steps.  This is significantly better than our best lo-
gistic classifier's 61.4% average error on success-
ful steps and the error on failed steps is also 
slightly less. 

Unfortunately, we had an error in our code 
that caused all of the SVMs in our final test to 
only use the original 15 features instead of the 35 
features that include slope and distance between 
feet.  We did not notice this until it was too late to 
retrain our final classifier for the competition 
submission deadline.  Thus our classifier for the 
competition, where we placed 2nd out of around 
fifteen teams, was sub par.  After retraining the 
classifier with all 35 features and using a smaller 
C value of 32,768 to reduce training time, the new 
classifier was 15% better than the classifier we 



submitted for the competition.  The majority of 
this improvement was in the successful step clas-
sification, reducing the error to 41.7% on the test 
set. 

Our competition classifier had problems with 
specific types of level three terrain because it did 
not use slope as a feature.  This lack of slope 
causes problems when our high level search cre-
ates a path that passes through a valley with steep 
slopes and a relatively small width.  In one par-
ticular level three map (seed 17833), our competi-
tion classifier took two hours and forty-seven 
minutes to find the goal while using our best SVM 
the robot took exactly sixteen minutes to find the 
goal.  While this is definitely an extreme case, we 
believe that our best classifier would drastically 
outperform our competition classifier on most ter-
rains because our competition classifier threw 
away too many successful steps. 

3.6 Hardwired Classifier 
After analyzing the behavior of our robot and the 
decisions of our classifiers, we decided to hard-
wire several constraints pertaining to the robot's 
physical limitations and the competition's rules.  
First, our hardwired classifier rejects any step that 
takes the dog out of the bounds of the terrain.  
Also, to completely eliminate the possibility of the 
dog dragging one of its feet, we also impose a re-
striction that if any of the feet are farther than 20 
cm from the center of the dog's body then that foot 
is the only foot that can move.  To eliminate the 
possibility of the dog reaching for a position that 
is too far away or too close to the dog's center, we 
also do not allow steps that bring the foot less than 
six cm from the center of the body and more than 
20 cm away from the body.  We made these cal-
culations by converting the robot's state and action 
to local coordinates.  We set the center of the dog 
3.5 cm in front of its true center in its length direc-
tion to encourage forward movement. 

Our hardwired classifier coupled with our 
high level search in Section 4 performed consid-
erably well.  While collecting data for the final 
dataset, the robot averaged 1:10:10, 0:19:33, 
0:07:33 on level 3, 2, and 1 terrains respectively, 
where the time format is HH:MM:SS.  These av-
erages include 21 terrains for each level.  The 
level three terrains had a high variance, with a 
maximum time of 3:43:35 and a minimum time of 
0:08:43.  From all of our tests, we found that the 

actual difficulty of level three maps can very 
greatly.  

4 High Level Search 
The most useful extension for our robot was the 
high level search.  We implemented our high level 
search by dividing the terrain into two layers of 
squares.  The first layer of squares divides the ter-
rain into sections like a chessboard.   For the sec-
ond layer, we place squares such that the center of 
each square is the intersection of the corner of 
four squares of the first layer.  The objective of 
our high level search is to find the best sequence 
of squares to pass through to reach the goal, and 
to intelligently place an intermediate goal in each 
square along the path. 

4.1 The Algorithm 
After creating our two layers, we sample the 
height of a certain number of points in each 
square by calling the simulator's getPointHeight 
function.  From the samples, we calculate the av-
erage height and variance of each square.  We 
then perform a greedy A-Star search from the start 
square to the goal square.  While in any given 
square, the successor squares are the immediate 
squares within the same layer that can be reached 
by moving up, down, left, or right and the imme-
diate squares in the opposite layer that can be 
reached by moving in a diagonal direction. 

The heuristic for our search is a weighted 
summation of the difference between average 
heights of the parent and child squares, the aver-
age height of the child square, and the straight-
line distance between the child square and the 
goal.  The weight for the difference between aver-
age heights and the weight for the average height 
of the child can optionally be constant or vary ac-
cording to the variance of the child square.  If the 
weights are not constant, then the weights are cal-
culated using two parameters: MiddleNum and 
MaxNum.  The height difference weight is calcu-
lated by MiddleNum divided by the variance of 
the child square while the height weight is calcu-
lated by MiddleNum times the variance of the 
child square.  Both weights are capped by a Max-
Num parameter and the variances used are multi-
plied by a scale parameter. 

After completing the A-Star search, we evalu-
ate each square along the path to decide where to 



place the square's goal.  For each square, we sam-
ple 100 points within the square and calculate the 
point's height and slope in both the x and y direc-
tions.  For each sample we calculate a score which 
is a summation of the absolute value of the differ-
ence between the sample's height and the square's 
average height, 100 times the absolute value of 
the x direction slope, and 100 times the absolute 
value of the y direction slope.  We place the goal 
at the sample with the lowest computed score.  
We chose each item in the summation through 
many testing runs and evaluations using our visu-
alization tools in Section 4.2. 

The high level search has 13 different parame-
ters.  They are the length of each square in the x 
and y directions, length of the entire search area in 
the x and y directions, the translation of the search 
area in the x and y directions, the number of sam-
ples per square, the scaling factor for the variance, 
an addition factor for the variance, the Middle-
Num, MaxNum, and straight-line distance weight 
for the heuristic, and a boolean for whether or not 
to use static weights for the heuristic.  If the 
search is told to use static weights then Middle-
Num is the weight for the height difference and 
MaxNum is the weight for the height of the child 
square.  Thus we can easily perform searches at 
different resolutions and in specific areas of any 
terrain. 

After much testing as described in Section 
4.2, our parameters in order are 0.26, 0.26, 3.0, 
2.8, 0.25, 0.0, 6000, 1900, 0.0, 350, 500, 7, and 
false.  The size of the square is 26 cm by 26 cm 
because the dog is roughly 26 cm long.  We only 
perform one high level search at the beginning of 
a terrain.  We did not have enough time to evalu-
ate using the high level search on specific areas of 
the terrain at varying resolutions, but we suspect 
that it would have improved performance. 

4.2 Path Visualization / Parameter 
Evaluation 

In order to visualize the results of our high level 
search implementation and parameter choices, we 
modified SDLittleDog.cpp in the simulator folder 
to output the entire path of goals that we generate.  
We changed the size and shape of the goal to be a 
thin cylinder that looks like a post coming out of 
the ground.  We also modified the goal display so 
that we can view multiple paths at once.  Yet an-

other visualization option that we implemented 
was the ability to view every square's goal with 
the height of the pole reflecting the average height 
of the given square.  The following figures show 
the output of our visualization schemes: 

 

 
Viewing just the goal path.  The goals disappear as they are reached. 

 

 
Viewing the same path with the other squares' posts not on the path. 

 

 
The same visualization (different run on the terrain), but viewed from 
above.  You can see how the goal posts were positioned within their 
squares.  All non-goal posts are located at the center of their square. 



 
Visualizing paths generated from different parameters.  The green 
path is the active path using our chosen parameters.  The other paths 
use constant weights for the heuristic.  The red, blue, and pink paths 
use 50, 350, and 350 for the height difference weight respectively 
and 350, 350, 50 for the child height weight respectively.  Thus the 
red path likes to stay close to sea level, the pink path likes to mini-
mize the change in height between squares, and the blue path tries to 
minimize both equally. 

 
Same visualization with the terrain turned on.  As you can see, each 
path has different behavior.  The blue path is similar to our variance 
path in this case except that the variance path tends to be smoother. 

 
Same visualization, different angle.  The red, blue, and pink poles in 
the distance (off the map) are markers for which color corresponds to 
which high level search.  The paths are plotted in the order that their 
respective high level search is executed. 

5 Turning Toward the Goal 
In an attempt to make the dog walk more natu-
rally, we added a side search to the searching 
process that makes the dog try to turn towards the 
next goal once reaching a goal.  The turning 
search uses as a heuristic the angle between the 
direction the dog is facing and the next goal.  We 
calculate the angle by approximating the dog's di-
rection based on its feet.  We create a vector from 
the points generated by the average of the front 
feet and the average of the back feet.  We create a 
second vector using the center of the dog's feet 
and the position of the next goal.  The turn is com-
plete when the angle is roughly less than 10 de-
grees.  To eliminate the problem of turning on dif-
ficult ground, the turning search quits if the search 
makes 150 failed steps.  From anecdotal evidence, 
making the dog turn significantly improves 
movement time on goals that are not initially in 
front of the robot. 

6 Statistics Analyzer 
While performing any search, we built in the op-
tion to record information such as the time to 
complete each turn, time to reach each goal, the 
number of successful and failed steps during each 
turn and while walking to each goal, the number 
of nodes on the fringe at the end of the search, the 
total number of nodes pulled off the fringe, the to-
tal number of classifier rejections, the total num-
ber of steps simulated, the total number of closed 
set hits, and the total number of failed simulation 
steps.  We created the ZStat class to process the 
data file containing this information for multiple 
runs.  ZStat parses the file and then computes av-
erages of all of the values.  We used ZStat to re-
port most of the various numbers in this report. 

7 Optimizations and Other De-
tails 

We implemented several other important items 
that helped our program in some way.  This in-
cludes using hashes to identify duplicate states, 
actions, and slopes and modifying QueueNode for 
efficient memory management of paths  

7.1 State, Action, and Slope Hashes 
We create an ID, which we call a hash, for each 
state, action, and slope, which we call a hash, by 



converting the respective class to a string where 
each double is reduced to three significant figures.  
Thus the State class's hash is a string of 36 charac-
ters, where each set of 9 characters are the (x,y,z) 
coordinates of a foot.  We use State's hash as the 
key to our closed set for eliminating repeated 
states.  The Action and Slopes classes have simi-
lar hashes, and we use hashes from all three 
classes for eliminating duplicate examples in our 
datasets. 

7.2 Efficient Path Storage 
In our original implementation of A-Star, each 
QueueNode held a list of states leading up to the 
current state.   This method used an unreasonable 
amount of memory because all of the same states 
along different QueueNodes' paths were stored in 
memory as separate objects.  Thus we modified 
our QueueNode class to hold a pointer to its par-
ent and we developed a system of use and delete 
methods that eliminated memory leaks and possi-
ble segmentation faults by automatically remov-
ing QueueNodes from memory when there are no 
more pointers pointing to the object.  This change 
allows us to store several hundred thousand 
QueueNodes in the same space that we could store 
say 60,000 previously. 

8 Conclusion 
As seen in the previous sections, we experimented 
with many different methods for improving our 
robot's performance.  The most useful extension 
by far was the high level search.  We feel that the 
least useful extension was the turning functional-
ity, but it still had a positive effect on the system.  
Overall, Support Vector Machines with polyno-
mial kernels were the best step classifiers, but 
they can take many hours longer to train.  Addi-
tionally, our hardwired classifier coupled with the 
high level search performed remarkably well.  
Another essential part of our system was our visu-
alization and analysis tools.  Without these tools 
we would not have been able to evaluate our algo-
rithms and fine tune the parameters. 

Given more time, we would have liked to try 
several other extensions such as using the high 
level search at different resolutions along the path 
to find better routes, trying additional features 
such as joint angles, predicting whether a state 
will lead to many failures in the future, and pre-

dicting whether a turn will be useful given the ter-
rain underneath the dog and the terrain on the path 
to the next goal.  We believe that all of these ex-
tensions would have a positive impact on the sys-
tem performance. 
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Appendix 
 

Table 1: Cross Validation for SVMs with Radial Basis Function Kernels 
(using dataset that does not contain level three terrain) (only the original 15 features) 

Classifier Name Foot Dataset 
Negative 

Error 
Positive 

Error 
Overall 
Error 

Processing 
Time 

(milliseconds) 
SVM_16384_rbf_3.05176e-05 fl train 100 0 50 8081 
SVM_16384_rbf_6.10352e-05 fl train 65.6263 15.9042 40.7653 6944 
SVM_16384_rbf_0.00012207 fl train 100 0 50 7172 

SVM_16384_rbf_0.000244141 fl train 99.7862 0 49.8931 7170 
SVM_16384_rbf_0.000488281 fl train 100 0 50 7215 
SVM_16384_rbf_0.000976562 fl train 100 0 50 7730 
SVM_16384_rbf_0.00195312 fl train 100 0 50 6912 
SVM_16384_rbf_0.00390625 fl train 100 0 50 7316 

SVM_16384_rbf_0.0078125 fl train 100 0 50 6397 
SVM_16384_rbf_0.015625 fl train 100 0 50 4958 
SVM_16384_rbf_0.03125 fl train 100 0 50 4222 

SVM_16384_rbf_0.0625 fl train 100 0 50 3644 
SVM_16384_rbf_0.125 fl train 91.6204 0.38478 46.0026 2698 

SVM_16384_rbf_0.25 fl train 92.9029 0.38478 46.6439 2713 
SVM_16384_rbf_0.5 fl train 93.6725 0.427533 47.05 2441 

SVM_16384_rbf_1 fl train 94.6986 0.427533 47.5631 2024 
SVM_16384_rbf_2 fl train 100 0 50 1927 
SVM_16384_rbf_4 fl train 95.4681 0.427533 47.9478 1633 

SVM_16384_rbf_3.05176e-05 fl cv 100 0 50 2658 
SVM_16384_rbf_6.10352e-05 fl cv 66.7089 14.8101 40.7595 2329 
SVM_16384_rbf_0.00012207 fl cv 100 0 50 2667 

SVM_16384_rbf_0.000244141 fl cv 100 0 50 2559 
SVM_16384_rbf_0.000488281 fl cv 100 0 50 2401 
SVM_16384_rbf_0.000976562 fl cv 100 0 50 2594 
SVM_16384_rbf_0.00195312 fl cv 100 0 50 2602 
SVM_16384_rbf_0.00390625 fl cv 100 0 50 2097 

SVM_16384_rbf_0.0078125 fl cv 100 0 50 2643 
SVM_16384_rbf_0.015625 fl cv 100 0 50 1801 
SVM_16384_rbf_0.03125 fl cv 100 0 50 1312 

SVM_16384_rbf_0.0625 fl cv 100 0 50 1099 
SVM_16384_rbf_0.125 fl cv 92.0253 0.379747 46.2025 883 

SVM_16384_rbf_0.25 fl cv 93.2911 0.253165 46.7722 867 
SVM_16384_rbf_0.5 fl cv 94.0506 0.379747 47.2152 809 

SVM_16384_rbf_1 fl cv 94.557 0.379747 47.4684 665 
SVM_16384_rbf_2 fl cv 100 0 50 617 
SVM_16384_rbf_4 fl cv 94.6835 0.253165 47.4684 556 

SVM_16384_rbf_3.05176e-05 fl test 100 0 50 2365 
SVM_16384_rbf_6.10352e-05 fl test 66.8428 15.1915 41.0172 2217 
SVM_16384_rbf_0.00012207 fl test 100 0 50 2554 

SVM_16384_rbf_0.000244141 fl test 99.6037 0 49.8018 2438 
SVM_16384_rbf_0.000488281 fl test 100 0 50 2606 
SVM_16384_rbf_0.000976562 fl test 100 0 50 2455 
SVM_16384_rbf_0.00195312 fl test 100 0 50 2550 
SVM_16384_rbf_0.00390625 fl test 100 0 50 2128 

SVM_16384_rbf_0.0078125 fl test 100 0 50 1882 
SVM_16384_rbf_0.015625 fl test 100 0 50 1609 
SVM_16384_rbf_0.03125 fl test 100 0 50 1284 

SVM_16384_rbf_0.0625 fl test 100 0 50 1058 
SVM_16384_rbf_0.125 fl test 90.753 0.1321 45.4425 948 

SVM_16384_rbf_0.25 fl test 92.074 0.1321 46.103 958 
SVM_16384_rbf_0.5 fl test 92.7345 0.1321 46.4333 764 

SVM_16384_rbf_1 fl test 94.1876 0.1321 47.1598 674 
SVM_16384_rbf_2 fl test 100 0 50 595 
SVM_16384_rbf_4 fl test 94.9802 0.1321 47.5561 554 

 
The classifier names indicate the C and gamma values through the format 

"SVM_C_rbf_gamma" 



Table 2: Cross Validation for SVMs with Polynomial Kernels 
(using the final dataset) (only the original 15 features) 

(Classifier name format: SVM_C_polynomial_degree_1_0) 

Classifier Name Foot Dataset 
Negative 

Error 
Positive 

Error 
Overall 
Error 

Processing 
Time 

(milliseconds) 
SVM_0.03125_polynomial_2_1_0 fl train 0 100 8.13 29966 

SVM_0.0625_polynomial_2_1_0 fl train 0 100 8.13 30052 
SVM_0.125_polynomial_2_1_0 fl train 0 100 8.13 30154 
SVM_0.25_polynomial_2_1_0 fl train 0 100 8.13 30668 

SVM_0.5_polynomial_2_1_0 fl train 0 100 8.13 32244 
SVM_1_polynomial_2_1_0 fl train 0 100 8.13 31278 
SVM_2_polynomial_2_1_0 fl train 0 100 8.13 32497 
SVM_4_polynomial_2_1_0 fl train 0 100 8.13 31215 
SVM_8_polynomial_2_1_0 fl train 0 100 8.13 32098 

SVM_16_polynomial_2_1_0 fl train 0 100 8.13 30790 
SVM_32_polynomial_2_1_0 fl train 0 100 8.13 30866 
SVM_64_polynomial_2_1_0 fl train 0 100 8.13 30471 

SVM_128_polynomial_2_1_0 fl train 0 100 8.13 30354 
SVM_256_polynomial_2_1_0 fl train 0 100 8.13 30286 
SVM_512_polynomial_2_1_0 fl train 97.04 0 89.16 30375 

SVM_1024_polynomial_2_1_0 fl train 0.44 82.2 7.08 31127 
SVM_2048_polynomial_2_1_0 fl train 0.74 74.68 6.75 30251 
SVM_4096_polynomial_2_1_0 fl train 0.88 71.43 6.62 30682 
SVM_8192_polynomial_2_1_0 fl train 100 0 91.87 29730 

SVM_16384_polynomial_2_1_0 fl train 100 0 91.87 30395 
SVM_32768_polynomial_2_1_0 fl train 100 0 91.87 29640 

SVM_0.03125_polynomial_3_1_0 fl train 0 100 8.13 30468 
SVM_0.0625_polynomial_3_1_0 fl train 0 100 8.13 31154 

SVM_0.125_polynomial_3_1_0 fl train 0 100 8.13 32047 
SVM_0.25_polynomial_3_1_0 fl train 0 100 8.13 31544 

SVM_0.5_polynomial_3_1_0 fl train 0 100 8.13 30944 
SVM_1_polynomial_3_1_0 fl train 0 100 8.13 30869 
SVM_2_polynomial_3_1_0 fl train 0 100 8.13 30879 
SVM_4_polynomial_3_1_0 fl train 0 100 8.13 31311 
SVM_8_polynomial_3_1_0 fl train 0 100 8.13 30991 

SVM_16_polynomial_3_1_0 fl train 0 100 8.13 31991 
SVM_32_polynomial_3_1_0 fl train 0 100 8.13 31001 
SVM_64_polynomial_3_1_0 fl train 0 100 8.13 31571 

SVM_128_polynomial_3_1_0 fl train 0 100 8.13 31880 
SVM_256_polynomial_3_1_0 fl train 0.01 99.19 8.07 31820 
SVM_512_polynomial_3_1_0 fl train 0.33 84.89 7.2 30817 

SVM_1024_polynomial_3_1_0 fl train 0.62 73.53 6.54 30503 
SVM_2048_polynomial_3_1_0 fl train 96.54 0 88.7 30287 
SVM_4096_polynomial_3_1_0 fl train 1.1 59.42 5.84 29604 
SVM_8192_polynomial_3_1_0 fl train 1.11 56.36 5.6 29854 

SVM_16384_polynomial_3_1_0 fl train 1.17 53.59 5.43 27687 
SVM_32768_polynomial_3_1_0 fl train 99.99 0 91.87 27034 

SVM_0.03125_polynomial_4_1_0 fl train 0 100 8.13 30907 
SVM_0.0625_polynomial_4_1_0 fl train 0 100 8.13 31102 

SVM_0.125_polynomial_4_1_0 fl train 0 100 8.13 31427 
SVM_0.25_polynomial_4_1_0 fl train 0 100 8.13 32498 

SVM_0.5_polynomial_4_1_0 fl train 0 100 8.13 30940 
SVM_1_polynomial_4_1_0 fl train 0 100 8.13 31154 
SVM_2_polynomial_4_1_0 fl train 0 100 8.13 31246 
SVM_4_polynomial_4_1_0 fl train 0 100 8.13 32626 
SVM_8_polynomial_4_1_0 fl train 0 100 8.13 31771 

SVM_16_polynomial_4_1_0 fl train 0 100 8.13 33334 
SVM_32_polynomial_4_1_0 fl train 0 100 8.13 31518 
SVM_64_polynomial_4_1_0 fl train 0 100 8.13 32807 

SVM_128_polynomial_4_1_0 fl train 0 100 8.13 31382 
SVM_256_polynomial_4_1_0 fl train 0.03 97.31 7.93 31480 
SVM_512_polynomial_4_1_0 fl train 12.92 42.31 15.3 32266 

SVM_1024_polynomial_4_1_0 fl train 1.44 65.06 6.61 32974 
SVM_2048_polynomial_4_1_0 fl train 0.53 75.75 6.65 32152 
SVM_4096_polynomial_4_1_0 fl train 0.82 66.64 6.17 30372 
SVM_8192_polynomial_4_1_0 fl train 97.85 0.07 89.9 29470 

SVM_16384_polynomial_4_1_0 fl train 1 56.21 5.49 28498 



Classifier Name Foot Dataset 
Negative 

Error 
Positive 

Error 
Overall 
Error 

Processing 
Time 

(milliseconds) 
SVM_32768_polynomial_4_1_0 fl train 94.74 0.04 87.04 27687 
SVM_49152_polynomial_3_1_0 fl train 1.31 48.95 5.18 26802 
SVM_65536_polynomial_3_1_0 fl train 1.32 48.06 5.12 26763 
SVM_81920_polynomial_3_1_0 fl train 1.31 46.92 5.02 27657 
SVM_98304_polynomial_3_1_0 fl train 1.33 46.48 5 26725 

SVM_131072_polynomial_3_1_0 fl train 100 0 91.87 25881 
SVM_49152_polynomial_4_1_0 fl train 1.09 50.65 5.11 30576 
SVM_65536_polynomial_4_1_0 fl train 99.33 0 91.26 27145 
SVM_81920_polynomial_4_1_0 fl train 1.11 47.25 4.86 26849 
SVM_98304_polynomial_4_1_0 fl train 99.99 0 91.87 27859 

SVM_131072_polynomial_4_1_0 fl train 1.09 45.48 4.7 28000 
SVM_0.03125_polynomial_2_1_0 fl cv 0 100 7.69 9911 

SVM_0.0625_polynomial_2_1_0 fl cv 0 100 7.69 9924 
SVM_0.125_polynomial_2_1_0 fl cv 0 100 7.69 10014 
SVM_0.25_polynomial_2_1_0 fl cv 0 100 7.69 10152 

SVM_0.5_polynomial_2_1_0 fl cv 0 100 7.69 10674 
SVM_1_polynomial_2_1_0 fl cv 0 100 7.69 10438 
SVM_2_polynomial_2_1_0 fl cv 0 100 7.69 10700 
SVM_4_polynomial_2_1_0 fl cv 0 100 7.69 10276 
SVM_8_polynomial_2_1_0 fl cv 0 100 7.69 10592 

SVM_16_polynomial_2_1_0 fl cv 0 100 7.69 10237 
SVM_32_polynomial_2_1_0 fl cv 0 100 7.69 10180 
SVM_64_polynomial_2_1_0 fl cv 0 100 7.69 10064 

SVM_128_polynomial_2_1_0 fl cv 0 100 7.69 10011 
SVM_256_polynomial_2_1_0 fl cv 0 100 7.69 10047 
SVM_512_polynomial_2_1_0 fl cv 96.74 0 89.31 10052 

SVM_1024_polynomial_2_1_0 fl cv 0.62 81.98 6.87 10274 
SVM_2048_polynomial_2_1_0 fl cv 0.9 75.85 6.66 9898 
SVM_4096_polynomial_2_1_0 fl cv 0.96 72.32 6.45 10173 
SVM_8192_polynomial_2_1_0 fl cv 100 0 92.31 9801 

SVM_16384_polynomial_2_1_0 fl cv 100 0 92.31 10085 
SVM_32768_polynomial_2_1_0 fl cv 100 0 92.31 9730 

SVM_0.03125_polynomial_3_1_0 fl cv 0 100 7.69 10239 
SVM_0.0625_polynomial_3_1_0 fl cv 0 100 7.69 10356 

SVM_0.125_polynomial_3_1_0 fl cv 0 100 7.69 10511 
SVM_0.25_polynomial_3_1_0 fl cv 0 100 7.69 10108 

SVM_0.5_polynomial_3_1_0 fl cv 0 100 7.69 10168 
SVM_1_polynomial_3_1_0 fl cv 0 100 7.69 10279 
SVM_2_polynomial_3_1_0 fl cv 0 100 7.69 10194 
SVM_4_polynomial_3_1_0 fl cv 0 100 7.69 10322 
SVM_8_polynomial_3_1_0 fl cv 0 100 7.69 10247 

SVM_16_polynomial_3_1_0 fl cv 0 100 7.69 10647 
SVM_32_polynomial_3_1_0 fl cv 0 100 7.69 10240 
SVM_64_polynomial_3_1_0 fl cv 0 100 7.69 10488 

SVM_128_polynomial_3_1_0 fl cv 0 100 7.69 10312 
SVM_256_polynomial_3_1_0 fl cv 0.01 98.59 7.59 10435 
SVM_512_polynomial_3_1_0 fl cv 0.46 84.81 6.94 10209 

SVM_1024_polynomial_3_1_0 fl cv 0.85 74.2 6.49 10108 
SVM_2048_polynomial_3_1_0 fl cv 96.28 0 88.88 10044 
SVM_4096_polynomial_3_1_0 fl cv 1.34 61.84 5.99 9741 
SVM_8192_polynomial_3_1_0 fl cv 1.39 58.66 5.79 9753 

SVM_16384_polynomial_3_1_0 fl cv 1.59 54.89 5.68 9204 
SVM_32768_polynomial_3_1_0 fl cv 99.99 0 92.31 8977 

SVM_0.03125_polynomial_4_1_0 fl cv 0 100 7.69 10238 
SVM_0.0625_polynomial_4_1_0 fl cv 0 100 7.69 10233 

SVM_0.125_polynomial_4_1_0 fl cv 0 100 7.69 10450 
SVM_0.25_polynomial_4_1_0 fl cv 0 100 7.69 10667 

SVM_0.5_polynomial_4_1_0 fl cv 0 100 7.69 10278 
SVM_1_polynomial_4_1_0 fl cv 0 100 7.69 10315 
SVM_2_polynomial_4_1_0 fl cv 0 100 7.69 10381 
SVM_4_polynomial_4_1_0 fl cv 0 100 7.69 10807 
SVM_8_polynomial_4_1_0 fl cv 0 100 7.69 4.29E+09 

SVM_16_polynomial_4_1_0 fl cv 0 100 7.69 11086 
SVM_32_polynomial_4_1_0 fl cv 0 100 7.69 10411 
SVM_64_polynomial_4_1_0 fl cv 0 100 7.69 10872 

SVM_128_polynomial_4_1_0 fl cv 0 100 7.69 10419 



Classifier Name Foot Dataset 
Negative 

Error 
Positive 

Error 
Overall 
Error 

Processing 
Time 

(milliseconds) 
SVM_256_polynomial_4_1_0 fl cv 0.03 97.06 7.49 10491 
SVM_512_polynomial_4_1_0 fl cv 12.89 42.76 15.19 10468 

SVM_1024_polynomial_4_1_0 fl cv 1.6 65.96 6.54 10770 
SVM_2048_polynomial_4_1_0 fl cv 0.78 74.32 6.44 10616 
SVM_4096_polynomial_4_1_0 fl cv 1.04 67.26 6.13 10046 
SVM_8192_polynomial_4_1_0 fl cv 97.93 0 90.4 9686 

SVM_16384_polynomial_4_1_0 fl cv 1.26 59.84 5.76 9462 
SVM_32768_polynomial_4_1_0 fl cv 94.83 0.12 87.55 9190 
SVM_49152_polynomial_3_1_0 fl cv 1.78 52.06 5.65 8926 
SVM_65536_polynomial_3_1_0 fl cv 1.81 51 5.59 8825 
SVM_81920_polynomial_3_1_0 fl cv 1.8 50.06 5.51 9165 
SVM_98304_polynomial_3_1_0 fl cv 1.83 49.59 5.5 8706 

SVM_131072_polynomial_3_1_0 fl cv 100 0 92.31 8582 
SVM_49152_polynomial_4_1_0 fl cv 1.62 53.24 5.59 9228 
SVM_65536_polynomial_4_1_0 fl cv 99.48 0 91.83 8989 
SVM_81920_polynomial_4_1_0 fl cv 1.69 52.3 5.58 8950 
SVM_98304_polynomial_4_1_0 fl cv 100 0 92.31 9071 

SVM_131072_polynomial_4_1_0 fl cv 1.7 50.29 5.43 9307 
SVM_0.03125_polynomial_2_1_0 fl test 0 100 8.22 10107 

SVM_0.0625_polynomial_2_1_0 fl test 0 100 8.22 10081 
SVM_0.125_polynomial_2_1_0 fl test 0 100 8.22 10186 
SVM_0.25_polynomial_2_1_0 fl test 0 100 8.22 10319 

SVM_0.5_polynomial_2_1_0 fl test 0 100 8.22 10811 
SVM_1_polynomial_2_1_0 fl test 0 100 8.22 10730 
SVM_2_polynomial_2_1_0 fl test 0 100 8.22 10910 
SVM_4_polynomial_2_1_0 fl test 0 100 8.22 10570 
SVM_8_polynomial_2_1_0 fl test 0 100 8.22 10845 

SVM_16_polynomial_2_1_0 fl test 0 100 8.22 10393 
SVM_32_polynomial_2_1_0 fl test 0 100 8.22 10322 
SVM_64_polynomial_2_1_0 fl test 0 100 8.22 10232 

SVM_128_polynomial_2_1_0 fl test 0 100 8.22 10223 
SVM_256_polynomial_2_1_0 fl test 0 100 8.22 10220 
SVM_512_polynomial_2_1_0 fl test 97.12 0 89.14 10247 

SVM_1024_polynomial_2_1_0 fl test 0.46 81.95 7.16 10527 
SVM_2048_polynomial_2_1_0 fl test 0.78 73.62 6.77 10057 
SVM_4096_polynomial_2_1_0 fl test 0.87 70.05 6.56 10428 
SVM_8192_polynomial_2_1_0 fl test 100 0 91.78 10004 

SVM_16384_polynomial_2_1_0 fl test 100 0 91.78 10388 
SVM_32768_polynomial_2_1_0 fl test 100 0 91.78 9961 

SVM_0.03125_polynomial_3_1_0 fl test 0 100 8.22 11932 
SVM_0.0625_polynomial_3_1_0 fl test 0 100 8.22 10526 

SVM_0.125_polynomial_3_1_0 fl test 0 100 8.22 11256 
SVM_0.25_polynomial_3_1_0 fl test 0 100 8.22 10222 

SVM_0.5_polynomial_3_1_0 fl test 0 100 8.22 10428 
SVM_1_polynomial_3_1_0 fl test 0 100 8.22 10425 
SVM_2_polynomial_3_1_0 fl test 0 100 8.22 10452 
SVM_4_polynomial_3_1_0 fl test 0 100 8.22 10571 
SVM_8_polynomial_3_1_0 fl test 0 100 8.22 10412 

SVM_16_polynomial_3_1_0 fl test 0 100 8.22 10854 
SVM_32_polynomial_3_1_0 fl test 0 100 8.22 10388 
SVM_64_polynomial_3_1_0 fl test 0 100 8.22 10661 

SVM_128_polynomial_3_1_0 fl test 0 100 8.22 10521 
SVM_256_polynomial_3_1_0 fl test 0 99.24 8.16 10624 
SVM_512_polynomial_3_1_0 fl test 0.34 83.14 7.15 10365 

SVM_1024_polynomial_3_1_0 fl test 0.64 73.95 6.67 10250 
SVM_2048_polynomial_3_1_0 fl test 96.77 0 88.82 10232 
SVM_4096_polynomial_3_1_0 fl test 1.2 60.22 6.05 9961 
SVM_8192_polynomial_3_1_0 fl test 1.29 57.41 5.9 9878 

SVM_16384_polynomial_3_1_0 fl test 1.32 54.92 5.72 9438 
SVM_32768_polynomial_3_1_0 fl test 100 0 91.78 9162 

SVM_0.03125_polynomial_4_1_0 fl test 0 100 8.22 10478 
SVM_0.0625_polynomial_4_1_0 fl test 0 100 8.22 10936 

SVM_0.125_polynomial_4_1_0 fl test 0 100 8.22 10652 
SVM_0.25_polynomial_4_1_0 fl test 0 100 8.22 10906 

SVM_0.5_polynomial_4_1_0 fl test 0 100 8.22 10477 
SVM_1_polynomial_4_1_0 fl test 0 100 8.22 10454 



Classifier Name Foot Dataset 
Negative 

Error 
Positive 

Error 
Overall 
Error 

Processing 
Time 

(milliseconds) 
SVM_2_polynomial_4_1_0 fl test 0 100 8.22 10530 
SVM_4_polynomial_4_1_0 fl test 0 100 8.22 10949 
SVM_8_polynomial_4_1_0 fl test 0 100 8.22 10914 

SVM_16_polynomial_4_1_0 fl test 0 100 8.22 11613 
SVM_32_polynomial_4_1_0 fl test 0 100 8.22 10620 
SVM_64_polynomial_4_1_0 fl test 0 100 8.22 11064 

SVM_128_polynomial_4_1_0 fl test 0 100 8.22 13542 
SVM_256_polynomial_4_1_0 fl test 0.07 97.41 8.07 10654 
SVM_512_polynomial_4_1_0 fl test 12.96 39.57 15.15 10766 

SVM_1024_polynomial_4_1_0 fl test 1.42 63.89 6.56 10949 
SVM_2048_polynomial_4_1_0 fl test 0.6 74.27 6.66 10907 
SVM_4096_polynomial_4_1_0 fl test 0.89 66.92 6.32 10200 
SVM_8192_polynomial_4_1_0 fl test 97.81 0.11 89.78 9891 

SVM_16384_polynomial_4_1_0 fl test 1.13 56.86 5.72 9569 
SVM_32768_polynomial_4_1_0 fl test 94.72 0 86.93 9496 
SVM_49152_polynomial_3_1_0 fl test 1.37 50.05 5.37 9152 
SVM_65536_polynomial_3_1_0 fl test 1.42 48.97 5.33 9363 
SVM_81920_polynomial_3_1_0 fl test 1.47 48.65 5.35 9367 
SVM_98304_polynomial_3_1_0 fl test 1.48 48.32 5.33 8786 

SVM_131072_polynomial_3_1_0 fl test 100 0 91.78 8746 
SVM_49152_polynomial_4_1_0 fl test 1.27 51.68 5.41 9275 
SVM_65536_polynomial_4_1_0 fl test 99.3 0 91.14 9111 
SVM_81920_polynomial_4_1_0 fl test 1.38 50.16 5.4 9140 
SVM_98304_polynomial_4_1_0 fl test 100 0 91.78 9211 

SVM_131072_polynomial_4_1_0 fl test 1.42 48.86 5.32 9777 
 


