
Extending WordNet using Generalized Automated Relationship Induction

Todd Sullivan
todd.sullivan@cs.stanford.edu

Nuwan I. Senaratna
nuwans@cs.stanford.edu

Lawrence McAfee
lcmcafee@stanford.edu

This paper describes a Java package for automatically ex-
tending WordNet and other semantic lexicons. Extending
these semantic lexicons by traditional means of hand la-
beling word relationships is an expensive and laborious
process. We used machine learning techniques to auto-
matically extract words with a given relationship from a
text corpus. The package is made to be flexible, allowing
for various modules, such as new classifiers and semantic
lexicons, to be “plugged-in.” The power of the package
comes from its ability to seamlessly integrate the Stanford
Parser with WordNet. Results obtained for various tests,
particularly those done for a Naïve Bayes classifier, are
promising.

1 Introduction
WordNet-like semantic lexicons are vital for re-
search and application development in natural
language processing and related fields. However,
attempts at extending such lexicons using tradi-
tional methods such as handcrafted patterns or
human insertion of new words into the taxonomy
to cover more general vocabularies have proved to
be expensive and tedious. Recently, there has
been some work into using machine learning-
based methods to automatically learn word rela-
tionships from large collections of text.

The goal of our project is to use machine
learning techniques to build a framework that is
capable of identifying a range of word relation-
ships. Our package is general enough to be able to
handle most types of relationships that can be ob-
served within single sentences. The large amount
of flexibility in our package is due to its extensi-
bility characteristics, allowing the user to add their
own custom classes for classification and defini-
tion of relationships.

Our package is also powerful because of its
ability to integrate the Stanford Parser and Word-
Net into a single API that allows the user to har-
ness the power of these two systems without any
prior experience with them. We use the Stanford
Parser to parse sentences into tree structures as
shown in Figure 1. We use WordNet as a starting
point for word pairs known to have or not have
the given relationship.

Figure 1: Example of a typed dependency tree

generated by the Stanford Parser [2]

Previously, an algorithm was developed by
Snow et al. to automatically induce new word
pairs from text that exhibit the hypernym relation-
ship [1]. We build upon work in [1] by creating a
generic word induction algorithm that can operate
on any word relationship where the word pairs ex-
ist in the same sentence. Additionally, we invoke
the induction process described in [1] repeatedly,
training on the previous training set and the new
word pairs generated from the previous iteration.
Snow showed that a dependency tree is a useful
representation of a sentence for capturing struc-
tured relational knowledge for the hypernym rela-
tionship. Dependency trees represent dependen-
cies between individual words in a sentence, and
are used in our solution as the default method for
extracting useful patterns from sentences.

Our project improves on [1]'s work by 1) in-
creasing accuracy through the use of a better
parser (the Stanford Parser), 2) broadening the use
for such an algorithm by incorporating a wider
range of word relationships, and 3) by being able
to train our algorithm on a much larger corpora
than was previously available.

2 Design
The design layout of the Generalized Automated
Relationship Inductor (GARI – see Figure 2) is
based on the following process:

Given a general semantic relationship, an ini-
tial training set of both known-to-be-related and
known-not-to-be-related word pairs for the given
relationship, and a large corpus of text, GARI will
use the training pairs to discover patterns in sen-
tence tree structures derived from the corpus that
indicate the existence of or lack of the relation-
ship. The two tree structures we tested were the
context-free phrase structure trees (also known as
Penn trees) and typed dependency trees.

Once such patterns are discovered, a classifier
is trained to predict whether an arbitrary pair of
words occurring in the corpus is related by the
given relationship. This process will allow the
discovery of yet unknown instance pairs of the re-
lationship.

The newly discovered (or “induced”) pairs
will then be added to the training set and the
above process will be repeated in a “chain reac-
tion” fashion (see Section 2.6). The process con-
tinues until we observe a reduction in the quality
of the induced results.

2.1 Component Libraries
We have designed GARI as a set of component
Java Libraries. These component libraries can be
used separately or combined as a whole. Our de-
sign consists of four principal packages:

 stanfordparser
 relationshipverifier
 feature
 classifier

The packages are combined to provide GARI’s
core functionality. Alternatively, if the user
wishes to exploit them individually, they may be
used separately.

By using the packages separately, the user can
conveniently parse sentences, retrieve lists of
word pairs that are known to have or not have a
given relationship, extract patterns from a corpus,
or use the built-in classifiers. The user is also free
to extend any of the classes and redesign the flow
of the algorithm to suit his/her needs.

Figure 2: Layout of GARI

2.2 Package stanfordparser
Given a corpus of plain text, we use the Stanford
Parser to generate a corresponding set of Penn
trees or typed dependency trees. We then find the
relevant path between pairs of words in each tree
(for example, a path connecting two nouns in the
case of the hypernym relationship). This package
interacts with the Stanford Parser Java API.

2.3 Package relationshipverifier
This package interfaces GARI with sources that
provide the initial training data needed to initiate
the induction process. It contains built-in func-
tionality for various relationships in WordNet as
well as interfaces that would enable GARI to ob-
tain initial training data from alternative semantic
lexicons and other data sources including plain
text files. The interface with WordNet interacts
with the WordNet Java API. The WordNet inter-
face generates pairs of words from WordNet that
are known-to-have and known-not-to-have a
given relation. This set of word pairs is pruned to
those that exist in the corpus, and the resulting set
is saved to disk for later use.

This is a flexible part of the system, as it al-
lows the user to “plug-in” any semantic lexicon
that contains example word pairs for a given rela-
tionship. Given the relation specified by the user,
GARI can learn any word relationship contained
in a single sentence. As default functionality,
GARI supports relationships of antonyms, holo-
nyms, hyper/hyponyms, meronyms, participles,
and synonyms.

2.4 Package feature
Once we have converted our text corpus into tree
structures and we have obtained the initial sets of
training data, we then extract relevant sub-trees in
the dependency trees that indicate patterns relating
the training pairs. The sub-trees are then used to
derive generic indicative patterns that are inde-
pendent of the specific training pair instances that
discovered the pattern. We then use an appropriate
subset of all such patterns discovered to define a
set of features that indicate, given a pair of words,
the frequency of occurrence in the text corpus of
the set of words with respect to each specific pat-
tern. Hence, for any pair of words in the text cor-
pus, we derive a feature vector that is representa-
tive of the frequency of occurrences of the pair of
words with respect to the patterns. Note that we
generate feature vectors for both positive and
negative training pairs. This is the most CPU in-
tensive package, as there are thousands of trees
that must be analyzed. Therefore, part of this
package is threaded to make use of a user-defined
number of CPUs.

2.5 Package classifier
After deriving the feature vector for each training
pair, we use the feature vectors to train the classi-
fier. Using non-training word pairs from the cor-
pus and their corresponding feature vectors, we
then use the classifier to “induce” new pairs. The
classifiers already implemented in the package are
logistic regression, Naïve Bayes, Support Vector
Machines1, and a “Naïve Entropy Score”2 classi-
fier that we designed.

This, again, is another flexible part of the sys-
tem in that the user can “plug-in” any classifier
he/she would like to use.

2.6 Feedback Loop
The induced pairs generated by the classification
stage are added to the set of training pairs and the
process is repeated (Figure 3). This loop can be
run until degradation in quality of relation induc-
tion is observed.

1 Using LibSVM 2.85
2 This classifier works as follows: for each relation pair, each pattern
in the feature vector is assigned a score in the range [-1,1], depending
on how indicative/anti-indicative the pattern is of the given relation-
ship (where zero indicates little information about the pattern for that
relation pair). Classification is done by summing over the patterns’
scores weighted by the pattern’s frequency of occurrence.

Figure 3: Feedback loop showing how newly found
word relationships are used to retrain the classifier.

2.7 Additional Packages
In addition to these four principal packages, we
have also included a skeleton package GUI that
may implement a set of front-ends that would al-
low exploiting GARI's functionality in a user-
friendly manner.

3 Methodology and Results

3.1 Deriving Training Data
We derived positive training pairs by generating
all of the word pairs in WordNet with the given
relation and then removing the pairs that do not
occur in the corpus. We derived negative training
pairs by generating all possible noun pairs from
the corpus3 and then testing them on WordNet to
filter out pairs that were related by the selected re-
lationship.

3.2 Deriving Patterns
We used two types of patterns in our testing: pat-
terns based on conventional dependency trees and
patterns based on context-free phrase structure
trees (also known as Penn trees). In both cases we
used a tree search, combined with several pattern
matching steps to derive the pattern. We also in-
cluded several preprocessing stages including
word stemming. The Penn tree method seemed to
produce more consistent patterns than the depend-
ency tree method and also required less preproc-
essing. However, the Penn trees required signifi-
cantly more physical memory during the computa-
tions and produced longer pattern strings.

3 We used a corpus consisting of nuclear development abstracts from
1986 through 2001 from the Center for Nonproliferation Studies
(CNS) at the Monterey Institute of International Studies. The corpus
was obtained through the AQUAINT Program and contains around
300,000 sentences.

We found that our most frequent patterns
were “well known” patterns. For example, for the
hypernym relation, the two most common patterns
were “WORD2 and other WORD1” and
“WORD1 such as WORD2”, which agree with the
commonly used Hearst [3] patterns for hypernym
relation induction.

3.3 Deriving Useful Patterns
We used the n most commonly occurring patterns
as our “useful” patterns. Restricting the number
of patterns (i.e., the number of features) mitigated
the effects of overfitting, but also resulted in some
word pairs not being discovered later on. To find
the optimal value of n, we ran our classifiers for
different values of n (where n was swept between
5 and 500) and recorded the accuracy and recall
from each run.

Varying n had the most effect on recall. Re-
call generally decreases as n increases. This is
most likely due to the fact that as n increases, our
classifier model becomes more complex and starts
to overfit the training data. In turn, more relation
pairs in the test set fall into the “unknown” cate-
gory, decreasing the recall. Recall is a function of
the size of the test set minus the number of rela-
tion pairs classified as “unknown.”

However, since using too low of values for n
would lead to low accuracy, a tradeoff must be
made between these two factors. In our tests, for
training on 100 Penn trees, we found n = 50 to
yield reasonable accuracy without a significant
drop in recall.

3.4 Generating Features
We used the number of times each unknown rela-
tion pair matched each pattern as the feature vec-
tor (with one feature for each pattern).

3.5 Testing
We successfully ran our algorithm for training

set sizes up to 5000 Penn trees. However, we
were able to compile significant statistics for test-
ing done only with 50 to 100 Penn trees (about
500-1000 word pairs) in the training set. Full test-
ing on larger training sets resulted in infeasibly
large computation time with respect to our dead-
line.

Classifier
Positive
Relation
Accuracy

Negative
Relation
Accuracy

Recall
(POS:NEG)

Naïve
Bayes

w/ margin
95.5% 99.0% 0.007 : 6.163

Naïve
Entropy

w/ margin
50% 94.1% 0.007 : 0.005

SVM 32.4% 100% 0.99 : 6.447
Log-Reg

w/ margin 23.3% 97.5% 1.279 : 6.695

Table 1: Accuracy and recall results for each classifier
on a single 50-sentence corpus. Recall calculated for
each labeling as the number of induced pairs not in the
training set divided by the training set size.

We learned from our experiments that using

the Penn trees resulted in much better test accu-
racy than with the dependency trees. We tested
our system by hand tagging about 5000 randomly
chosen word pairs from the corpus for the hy-
pernym relation. We then compared these hand-
tagged pairs against the induced relation pairs4.

Although our training sets and test sets were
limited in size, we can still infer information
about the classifiers relative to each other. Since
all classifiers had more than an order of magni-
tude ratio in negative-to-positive training pairs, all
classifiers induced a large number of negative re-
lations that were virtually all correct. The accura-
cies in Table 1 are for correct labeling of relation
pairs classified as “yes” by each classifier, as
compared to our hand-labeled list.

Naïve Bayes had the best accuracy of all the
classifiers. It is well suited to this sort of applica-
tion, where we have sparse feature vectors con-
sisting of small positive numbers. Naive Bayes
had to be modified for this use by putting a mar-
gin between the “yes”/“no” labels, leaving a group
of “unknown” labels in the middle.

Generally, accuracy tends to decrease as recall
increases. In addition to characteristics of the in-
dividual classifiers, recall and accuracy tend to
have an inverse relationship because the accuracy
is partially set by the classifier’s margin. As the

4 Accuracy was calculated only from the subset of induced pairs that
were in the hand-tagged set.

margin is decreased, the recall will increase, but
the accuracy will be lower because pairs that had
been previously classified as “unknown” are now
being set as “yes” or “no.”

Logistic regression gave the lowest accuracy
of all the classifiers. In general, it is not well
suited to this type of application due to its Hessian
matrix being sparse5.

3.6 Inducing New Relation Pairs
For each iteration of the feedback loop, the algo-
rithm was able to induce around 5% of the origi-
nal training set size (using a larger training set and
small feature vector with the Naïve Entropy Score
Classifier). In other words, on each iteration, the
number of relation pairs classified as “yes” or
“no” (i.e., not “unknown”) increased the training
set for the next iteration by 5%.

Despite these positive results, the induction
step was too processor intensive and time con-
suming, and hence prevented us from compiling a
larger set of test results. However, parallelizing
several computation steps (in package feature)
gave a significant improvement in performance.
We threaded our algorithm to work across multi-
ple processors, and were able to achieve signifi-
cant speedup when running on a system with 8
processing cores (Figure 4).

3.7 Terminating Feedback Loop
Each classifier terminates its feedback loop when
the classifier begins to induce incorrect relation
pairs. This can be observed by the fact that the
classifier will start incorrectly classifying known
positive and negative relation pairs. Due to com-
putational complexity, we were not able to run the
feedback loop enough iterations to determine a
satisfactory breaking point. However, this can be
set by the user to meet accuracy constraints.

4 Future Work
There are two primary tasks that we recommend
as the next steps for this project: 1) generalizing
the relationship extraction algorithm, and 2) opti-
mizing the algorithm for speed. Generalizing the
system includes making it capable of inducing
across-paragraph and across-multiparagraph rela-

5 We used a modified version of logistic regression where we set all
zero values in the Hessian to small positive values.

tionships. Certain word relationships, such as
verb-verb relationships, are difficult to induce
from single-sentence parsing because multiple
verbs in a sentence do not occur as frequently as
multiple nouns.

Figure 4: Execution time

Our other recommendation is to work on op-
timizing the code such that it is not as processor
intensive. This specifically applies to the fea-
ture package, which in the current state would
require several CPUs to be feasible in a real-world
application. This optimization most likely would
include using a different form for storing the deci-
sion trees such that extracting patterns and new
word pairs from the corpus is less CPU intensive.

5 Acknowledgements
We would like to thank Stanford graduate student
Rion Snow, who advised us and shared his work
with us during this project. We would also like to
thank Profs. Dan Jurafsky and Andrew Ng for ad-
vice they gave us along the way.

6 References
[1] Snow, R. & Jurafsky, D. & Ng, A. Y. (2005)

Learning syntactic patterns for automatic hy-
pernym discovery. NIPS 2005.

[2] de Marneffe, MC. & MacCartney, B. & Manning,
CD (2006) Generating Typed Dependency Parses
from Phrase Structure Parses. Proceedings of 5th
International Conference on Language Resources
and Evaluation (LREC2006). Genoa, Italy.

[3] Hearst, M. (1992) Automatic Acquisition of Hypo-
nyms from Large Text Corpora. Proc. of the Four-
teenth International Conference on Computational
Linguistics. Nantes, France.

