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This paper describes a Java package for automatically ex-
tending WordNet and other semantic lexicons.  Extending 
these semantic lexicons by traditional means of hand la-
beling word relationships is an expensive and laborious 
process.  We used machine learning techniques to auto-
matically extract words with a given relationship from a 
text corpus.  The package is made to be flexible, allowing 
for various modules, such as new classifiers and semantic 
lexicons, to be “plugged-in.”  The power of the package 
comes from its ability to seamlessly integrate the Stanford 
Parser with WordNet.  Results obtained for various tests, 
particularly those done for a Naïve Bayes classifier, are 
promising. 
 

1 Introduction 
WordNet-like semantic lexicons are vital for re-
search and application development in natural 
language processing and related fields. However, 
attempts at extending such lexicons using tradi-
tional methods such as handcrafted patterns or 
human insertion of new words into the taxonomy 
to cover more general vocabularies have proved to 
be expensive and tedious. Recently, there has 
been some work into using machine learning-
based methods to automatically learn word rela-
tionships from large collections of text. 

The goal of our project is to use machine 
learning techniques to build a framework that is 
capable of identifying a range of word relation-
ships. Our package is general enough to be able to 
handle most types of relationships that can be ob-
served within single sentences. The large amount 
of flexibility in our package is due to its extensi-
bility characteristics, allowing the user to add their 
own custom classes for classification and defini-
tion of relationships. 

Our package is also powerful because of its 
ability to integrate the Stanford Parser and Word-
Net into a single API that allows the user to har-
ness the power of these two systems without any 
prior experience with them.  We use the Stanford 
Parser to parse sentences into tree structures as 
shown in Figure 1.  We use WordNet as a starting 
point for word pairs known to have or not have 
the given relationship. 

 
Figure 1: Example of a typed dependency tree 

generated by the Stanford Parser [2] 
 
 

Previously, an algorithm was developed by 
Snow et al. to automatically induce new word 
pairs from text that exhibit the hypernym relation-
ship [1]. We build upon work in [1] by creating a 
generic word induction algorithm that can operate 
on any word relationship where the word pairs ex-
ist in the same sentence. Additionally, we invoke 
the induction process described in [1] repeatedly, 
training on the previous training set and the new 
word pairs generated from the previous iteration. 
Snow showed that a dependency tree is a useful 
representation of a sentence for capturing struc-
tured relational knowledge for the hypernym rela-
tionship. Dependency trees represent dependen-
cies between individual words in a sentence, and 
are used in our solution as the default method for 
extracting useful patterns from sentences. 

Our project improves on [1]'s work by 1) in-
creasing accuracy through the use of a better 
parser (the Stanford Parser), 2) broadening the use 
for such an algorithm by incorporating a wider 
range of word relationships, and 3) by being able 
to train our algorithm on a much larger corpora 
than was previously available. 



2 Design 
The design layout of the Generalized Automated 
Relationship Inductor (GARI – see Figure 2) is 
based on the following process: 

Given a general semantic relationship, an ini-
tial training set of both known-to-be-related and 
known-not-to-be-related word pairs for the given 
relationship, and a large corpus of text, GARI will 
use the training pairs to discover patterns in sen-
tence tree structures derived from the corpus that 
indicate the existence of or lack of the relation-
ship.  The two tree structures we tested were the 
context-free phrase structure trees (also known as 
Penn trees) and typed dependency trees. 

Once such patterns are discovered, a classifier 
is trained to predict whether an arbitrary pair of 
words occurring in the corpus is related by the 
given relationship. This process will allow the 
discovery of yet unknown instance pairs of the re-
lationship. 

The newly discovered (or “induced”) pairs 
will then be added to the training set and the 
above process will be repeated in a “chain reac-
tion” fashion (see Section 2.6). The process con-
tinues until we observe a reduction in the quality 
of the induced results. 
 

2.1 Component Libraries 
We have designed GARI   as a set of component 
Java Libraries. These component libraries can be 
used separately or combined as a whole. Our de-
sign consists of four principal packages: 

 stanfordparser 
 relationshipverifier 
 feature 
 classifier 

The packages are combined to provide GARI’s 
core functionality. Alternatively, if the user 
wishes to exploit them individually, they may be 
used separately. 

By using the packages separately, the user can 
conveniently parse sentences, retrieve lists of 
word pairs that are known to have or not have a 
given relationship, extract patterns from a corpus, 
or use the built-in classifiers.  The user is also free 
to extend any of the classes and redesign the flow 
of the algorithm to suit his/her needs. 

 

 
 

Figure 2: Layout of GARI 

2.2 Package stanfordparser 
Given a corpus of plain text, we use the Stanford 
Parser to generate a corresponding set of Penn 
trees or typed dependency trees.  We then find the 
relevant path between pairs of words in each tree 
(for example, a path connecting two nouns in the 
case of the hypernym relationship). This package 
interacts with the Stanford Parser Java API. 

2.3 Package relationshipverifier 
This package interfaces GARI with sources that 
provide the initial training data needed to initiate 
the induction process. It contains built-in func-
tionality for various relationships in WordNet as 
well as interfaces that would enable GARI to ob-
tain initial training data from alternative semantic 
lexicons and other data sources including plain 
text files. The interface with WordNet interacts 
with the WordNet Java API.  The WordNet inter-
face generates pairs of words from WordNet that 
are known-to-have and known-not-to-have a 
given relation.  This set of word pairs is pruned to 
those that exist in the corpus, and the resulting set 
is saved to disk for later use. 

This is a flexible part of the system, as it al-
lows the user to “plug-in” any semantic lexicon 
that contains example word pairs for a given rela-
tionship.  Given the relation specified by the user, 
GARI can learn any word relationship contained 
in a single sentence.  As default functionality, 
GARI supports relationships of antonyms, holo-
nyms, hyper/hyponyms, meronyms, participles, 
and synonyms. 



2.4 Package feature 
Once we have converted our text corpus into tree 
structures and we have obtained the initial sets of 
training data, we then extract relevant sub-trees in 
the dependency trees that indicate patterns relating 
the training pairs. The sub-trees are then used to 
derive generic indicative patterns that are inde-
pendent of the specific training pair instances that 
discovered the pattern. We then use an appropriate 
subset of all such patterns discovered to define a 
set of features that indicate, given a pair of words, 
the frequency of occurrence in the text corpus of 
the set of words with respect to each specific pat-
tern. Hence, for any pair of words in the text cor-
pus, we derive a feature vector that is representa-
tive of the frequency of occurrences of the pair of 
words with respect to the patterns. Note that we 
generate feature vectors for both positive and 
negative training pairs. This is the most CPU in-
tensive package, as there are thousands of trees 
that must be analyzed.  Therefore, part of this 
package is threaded to make use of a user-defined 
number of CPUs. 

2.5 Package classifier 
After deriving the feature vector for each training 
pair, we use the feature vectors to train the classi-
fier. Using non-training word pairs from the cor-
pus and their corresponding feature vectors, we 
then use the classifier to “induce” new pairs.  The 
classifiers already implemented in the package are 
logistic regression, Naïve Bayes, Support Vector 
Machines1, and a “Naïve Entropy Score”2 classi-
fier that we designed. 

This, again, is another flexible part of the sys-
tem in that the user can “plug-in” any classifier 
he/she would like to use. 

2.6 Feedback Loop 
The induced pairs generated by the classification 
stage are added to the set of training pairs and the 
process is repeated (Figure 3).  This loop can be 
run until degradation in quality of relation induc-
tion is observed. 

                                                        
1 Using LibSVM 2.85  
2 This classifier works as follows: for each relation pair, each pattern 
in the feature vector is assigned a score in the range [-1,1], depending 
on how indicative/anti-indicative the pattern is of the given relation-
ship (where zero indicates little information about the pattern for that 
relation pair). Classification is done by summing over the patterns’ 
scores weighted by the pattern’s frequency of occurrence. 

 
 

Figure 3: Feedback loop showing how newly found 
word relationships are used to retrain the classifier. 

2.7 Additional Packages 
In addition to these four principal packages, we 
have also included a skeleton package GUI that 
may implement a set of front-ends that would al-
low exploiting GARI's functionality in a user-
friendly manner. 

3 Methodology and Results 

3.1 Deriving Training Data 
We derived positive training pairs by generating 
all of the word pairs in WordNet with the given 
relation and then removing the pairs that do not 
occur in the corpus. We derived negative training 
pairs by generating all possible noun pairs from 
the corpus3 and then testing them on WordNet to 
filter out pairs that were related by the selected re-
lationship.   

3.2 Deriving Patterns 
We used two types of patterns in our testing: pat-
terns based on conventional dependency trees and 
patterns based on context-free phrase structure 
trees (also known as Penn trees). In both cases we 
used a tree search, combined with several pattern 
matching steps to derive the pattern. We also in-
cluded several preprocessing stages including 
word stemming. The Penn tree method seemed to 
produce more consistent patterns than the depend-
ency tree method and also required less preproc-
essing. However, the Penn trees required signifi-
cantly more physical memory during the computa-
tions and produced longer pattern strings. 

                                                        
3 We used a corpus consisting of nuclear development abstracts from 
1986 through 2001 from the Center for  Nonproliferation Studies 
(CNS) at the Monterey Institute of  International Studies.  The corpus 
was obtained through the AQUAINT Program and contains around 
300,000 sentences. 



We found that our most frequent patterns 
were “well known” patterns. For example, for the 
hypernym relation, the two most common patterns 
were “WORD2 and other WORD1” and 
“WORD1 such as WORD2”, which agree with the 
commonly used Hearst [3] patterns for hypernym 
relation induction. 

3.3 Deriving Useful Patterns 
We used the n most commonly occurring patterns 
as our “useful” patterns.  Restricting the number 
of patterns (i.e., the number of features) mitigated 
the effects of overfitting, but also resulted in some 
word pairs not being discovered later on. To find 
the optimal value of n, we ran our classifiers for 
different values of n (where n was swept between 
5 and 500) and recorded the accuracy and recall 
from each run. 

Varying n had the most effect on recall.  Re-
call generally decreases as n increases.  This is 
most likely due to the fact that as n increases, our 
classifier model becomes more complex and starts 
to overfit the training data.  In turn, more relation 
pairs in the test set fall into the “unknown” cate-
gory, decreasing the recall.  Recall is a function of 
the size of the test set minus the number of rela-
tion pairs classified as “unknown.” 

However, since using too low of values for n 
would lead to low accuracy, a tradeoff must be 
made between these two factors.  In our tests, for 
training on 100 Penn trees, we found n = 50 to 
yield reasonable accuracy without a significant 
drop in recall. 

3.4 Generating Features 
We used the number of times each unknown rela-
tion pair matched each pattern as the feature vec-
tor (with one feature for each pattern). 

3.5 Testing 
We successfully ran our algorithm for training 

set sizes up to 5000 Penn trees.  However, we 
were able to compile significant statistics for test-
ing done only with 50 to 100 Penn trees (about 
500-1000 word pairs) in the training set. Full test-
ing on larger training sets resulted in infeasibly 
large computation time with respect to our dead-
line. 

 
 

 
 
 

Classifier  
Positive 
Relation 
Accuracy 

Negative 
Relation 
Accuracy 

Recall 
(POS:NEG) 

Naïve 
Bayes 

w/ margin 
95.5% 99.0% 0.007 : 6.163 

Naïve 
Entropy 

w/ margin 
50% 94.1% 0.007 : 0.005 

SVM 32.4% 100% 0.99 : 6.447 
Log-Reg 

w/ margin 23.3% 97.5% 1.279 : 6.695 

 
Table 1: Accuracy and recall results for each classifier 
on a single 50-sentence corpus.  Recall calculated for 
each labeling as the number of induced pairs not in the 
training set divided by the training set size. 

 
We learned from our experiments that using 

the Penn trees resulted in much better test accu-
racy than with the dependency trees.  We tested 
our system by hand tagging about 5000 randomly 
chosen word pairs from the corpus for the hy-
pernym relation.  We then compared these hand-
tagged pairs against the induced relation pairs4. 

Although our training sets and test sets were 
limited in size, we can still infer information 
about the classifiers relative to each other. Since 
all classifiers had more than an order of magni-
tude ratio in negative-to-positive training pairs, all 
classifiers induced a large number of negative re-
lations that were virtually all correct.  The accura-
cies in Table 1 are for correct labeling of relation 
pairs classified as “yes” by each classifier, as 
compared to our hand-labeled list. 

Naïve Bayes had the best accuracy of all the 
classifiers.  It is well suited to this sort of applica-
tion, where we have sparse feature vectors con-
sisting of small positive numbers.  Naive Bayes 
had to be modified for this use by putting a mar-
gin between the “yes”/“no” labels, leaving a group 
of “unknown” labels in the middle. 

Generally, accuracy tends to decrease as recall 
increases.  In addition to characteristics of the in-
dividual classifiers, recall and accuracy tend to 
have an inverse relationship because the accuracy 
is partially set by the classifier’s margin. As the 

                                                        
4 Accuracy was calculated only from the subset of induced pairs that 
were in the hand-tagged set. 



margin is decreased, the recall will increase, but 
the accuracy will be lower because pairs that had 
been previously classified as “unknown” are now 
being set as “yes” or “no.” 

Logistic regression gave the lowest accuracy 
of all the classifiers.  In general, it is not well 
suited to this type of application due to its Hessian 
matrix being sparse5.  

3.6 Inducing New Relation Pairs 
For each iteration of the feedback loop, the algo-
rithm was able to induce around 5% of the origi-
nal training set size (using a larger training set and 
small feature vector with the Naïve Entropy Score 
Classifier).  In other words, on each iteration, the 
number of relation pairs classified as “yes” or 
“no” (i.e., not “unknown”) increased the training 
set for the next iteration by 5%. 

Despite these positive results, the induction 
step was too processor intensive and time con-
suming, and hence prevented us from compiling a 
larger set of test results. However, parallelizing 
several computation steps (in package feature) 
gave a significant improvement in performance.  
We threaded our algorithm to work across multi-
ple processors, and were able to achieve signifi-
cant speedup when running on a system with 8 
processing cores (Figure 4). 

3.7 Terminating Feedback Loop  
Each classifier terminates its feedback loop when 
the classifier begins to induce incorrect relation 
pairs. This can be observed by the fact that the 
classifier will start incorrectly classifying known 
positive and negative relation pairs. Due to com-
putational complexity, we were not able to run the 
feedback loop enough iterations to determine a 
satisfactory breaking point.  However, this can be 
set by the user to meet accuracy constraints. 

4 Future Work 
There are two primary tasks that we recommend 
as the next steps for this project: 1) generalizing 
the relationship extraction algorithm, and 2) opti-
mizing the algorithm for speed. Generalizing the 
system includes making it capable of inducing 
across-paragraph and across-multiparagraph rela-

                                                        
5 We used a modified version of logistic regression where we set all 
zero values in the Hessian to small positive values. 

tionships.  Certain word relationships, such as 
verb-verb relationships, are difficult to induce 
from single-sentence parsing because multiple 
verbs in a sentence do not occur as frequently as 
multiple nouns. 

 

Figure 4: Execution time 
 

Our other recommendation is to work on op-
timizing the code such that it is not as processor 
intensive.  This specifically applies to the fea-
ture package, which in the current state would 
require several CPUs to be feasible in a real-world 
application.  This optimization most likely would 
include using a different form for storing the deci-
sion trees such that extracting patterns and new 
word pairs from the corpus is less CPU intensive. 
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